Uracil-DNA Glycosidase

尿嘧啶 - DNA 糖苷酶
  • 文章类型: Journal Article
    DNA碱基编辑技术主要利用工程脱氨酶,限制了他们直接编辑胸腺嘧啶和鸟嘌呤的能力。在这项研究中,我们通过改造尿嘧啶-DNA糖基化酶(UNG),利用跨损伤DNA合成途径,成功实现胞苷和胸腺嘧啶的碱基编辑.采用基于结构的合理设计,同源蛋白质的探索,和突变筛查,我们确定了一种能够有效编辑胸腺嘧啶的耐放射球菌UNG突变体。当与切口酶Cas9融合时,工程化的DrUNG蛋白有助于在内源位点进行有效的胸腺嘧啶碱基编辑,实现高达55%的编辑效率而不富集,并表现出最小的细胞毒性。这种胸腺嘧啶碱基编辑器(TBE)表现出高编辑特异性,并显着恢复了Hurler综合征患者细胞中的IDUA酶活性。TBE代表高效,具体,和低毒性的碱基编辑方法,在治疗相关疾病中具有潜在的应用。
    DNA base editing technologies predominantly utilize engineered deaminases, limiting their ability to edit thymine and guanine directly. In this study, we successfully achieve base editing of both cytidine and thymine by leveraging the translesion DNA synthesis pathway through the engineering of uracil-DNA glycosylase (UNG). Employing structure-based rational design, exploration of homologous proteins, and mutation screening, we identify a Deinococcus radiodurans UNG mutant capable of effectively editing thymine. When fused with the nickase Cas9, the engineered DrUNG protein facilitates efficient thymine base editing at endogenous sites, achieving editing efficiencies up to 55% without enrichment and exhibiting minimal cellular toxicity. This thymine base editor (TBE) exhibits high editing specificity and significantly restores IDUA enzyme activity in cells derived from patients with Hurler syndrome. TBEs represent efficient, specific, and low-toxicity approaches to base editing with potential applications in treating relevant diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA糖基化酶是一组酶,通过识别和去除DNA分子中受损或不正确的碱基,在DNA修复过程中发挥关键作用。保持遗传信息的完整性。尿嘧啶DNA糖基化酶(UDG)的异常表达,碱基切除修复途径中重要的DNA糖基化酶之一,与许多疾病有关。这里,我们提出了一种简单的基于立足点区触发CRISPR/Cas12a反式切割的UDG活性检测方法。UDG产生的发夹DNA探针(HP)上的立足点区域可以诱导荧光团和猝灭剂对ssDNA的反式切割,产生明显的荧光信号。这种无原型间隔区相邻基序(PAM)的方法在检测UDG方面具有显着的灵敏度和特异性,检出限低至0.000368UmL-1。此外,该方法能够在复杂的生物样品中筛选抑制剂和测量UDG。这些优点使其在临床诊断和药物发现中的应用非常有希望。
    DNA glycosylases are a group of enzymes that play a crucial role in the DNA repair process by recognizing and removing damaged or incorrect bases from DNA molecules, which maintains the integrity of the genetic information. The abnormal expression of uracil-DNA glycosylase (UDG), one of significant DNA glycosylases in the base-excision repair pathway, is linked to numerous diseases. Here, we proposed a simple UDG activity detection method based on toehold region triggered CRISPR/Cas12a trans-cleavage. The toehold region on hairpin DNA probe (HP) produced by UDG could induce the trans-cleavage of ssDNA with fluorophore and quencher, generating an obvious fluorescence signal. This protospacer adjacent motif (PAM)-free approach achieves remarkable sensitivity and specificity in detecting UDG, with a detection limit as low as 0.000368 U mL-1. Moreover, this method is able to screen inhibitors and measure UDG in complex biological samples. These advantages render it highly promising for applications in clinical diagnosis and drug discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA损伤的产生导致突变并因此导致癌症。活性氧是在人类癌症中发现的DNA损伤和一些突变特征的重要来源。8-氧代-7,8-二氢鸟嘌呤(GO,8-羟基鸟嘌呤)是最丰富的氧化碱基之一,并在修饰位点诱导G→T颠换突变。受损的G碱基还导致人类细胞中5'-GpA-3'二核苷酸G碱基的非靶向碱基置换突变(远距离作用突变),和胞嘧啶脱氨酶载脂蛋白BmRNA编辑酶,催化多肽样3(APOBEC3)参与突变过程。脱氨基的胞嘧啶,即,尿嘧啶,预计尿嘧啶DNA糖基化酶会去除碱基。5'-GpA-3'的G碱基处的大多数取代突变可能是由糖基化酶形成的无碱基位点引起的。在这项研究中,我们在人U2OS细胞中表达了来自枯草芽孢杆菌噬菌体PBS2的尿嘧啶DNA糖基化酶抑制剂,并研究了其对GO诱导的作用距离突变的影响.尿嘧啶DNA糖基化酶的抑制增加了突变频率,特别是,G→A跃迁的频率。这些结果表明尿嘧啶DNA糖基化酶,除APOBEC3外,还参与GO诱导的非靶向突变过程。
    The generation of DNA damage causes mutations and consequently cancer. Reactive oxygen species are important sources of DNA damage and some mutation signatures found in human cancers. 8-Oxo-7,8-dihydroguanine (GO, 8-hydroxyguanine) is one of the most abundant oxidized bases and induces a G→T transversion mutation at the modified site. The damaged G base also causes untargeted base substitution mutations at the G bases of 5\'-GpA-3\' dinucleotides (action-at-a-distance mutations) in human cells, and the cytosine deaminase apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) is involved in the mutation process. The deaminated cytosine, i.e., uracil, bases are expected to be removed by uracil DNA glycosylase. Most of the substitution mutations at the G bases of 5\'-GpA-3\' might be caused by abasic sites formed by the glycosylase. In this study, we expressed the uracil DNA glycosylase inhibitor from Bacillus subtilis bacteriophage PBS2 in human U2OS cells and examined the effects on the GO-induced action-at-a-distance mutations. The inhibition of uracil DNA glycosylase increased the mutation frequency, and in particular, the frequency of G→A transitions. These results indicated that uracil DNA glycosylase, in addition to APOBEC3, is involved in the untargeted mutation process induced by GO.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    可点击核苷,最常见的是5-乙炔基-2'-脱氧尿苷(EtU),广泛用于研究活细胞中的DNA复制和用于生物基因组学应用的DNA功能化。尽管可点击的dNTP很容易被DNA聚合酶整合到不断增长的链中,之后,它们可能成为DNA修复系统的靶标或干扰忠实的核苷酸插入。对这些合成后事件的可能性和机制知之甚少。这里,我们研究了EtU和两个较大的可点击嘧啶核苷的修复和(mis)编码特性,5-(八-1,7-二炔基)-U(C8-AlkU)和5-(八-1,7-二炔基)-C(C8-AlkC)。体外,EtU和C8-AlkU,但不是C8-AlkC,通过SMUG1和MBD4,两种DNA糖基化酶从碱基切除修复途径切除。然而,当放置在编码通过修复在人类细胞中失活的荧光报道分子的质粒中时,EtU和C8-AlkU的持续时间比尿嘧啶或其可修复性差的硫代磷酸酯侧翼衍生物长得多。来自四个不同结构家族的DNA聚合酶优先绕过EtU,C8-AlkU和C8-AlkC无差错,但也观察到了一定程度的错误合并,对于DNA聚合酶β尤其明显。总的来说,可点击的嘧啶核苷酸可以进行修复并成为突变的来源,但是细胞中此类事件的频率不太可能相当大。
    Clickable nucleosides, most often 5-ethynyl-2\'-deoxyuridine (EtU), are widely used in studies of DNA replication in living cells and in DNA functionalization for bionanotechology applications. Although clickable dNTPs are easily incorporated by DNA polymerases into the growing chain, afterwards they might become targets for DNA repair systems or interfere with faithful nucleotide insertion. Little is known about the possibility and mechanisms of these post-synthetic events. Here, we investigated the repair and (mis)coding properties of EtU and two bulkier clickable pyrimidine nucleosides, 5-(octa-1,7-diyn-1-yl)-U (C8-AlkU) and 5-(octa-1,7-diyn-1-yl)-C (C8-AlkC). In vitro, EtU and C8-AlkU, but not C8-AlkC, were excised by SMUG1 and MBD4, two DNA glycosylases from the base excision repair pathway. However, when placed into a plasmid encoding a fluorescent reporter inactivated by repair in human cells, EtU and C8-AlkU persisted for much longer than uracil or its poorly repairable phosphorothioate-flanked derivative. DNA polymerases from four different structural families preferentially bypassed EtU, C8-AlkU and C8-AlkC in an error-free manner, but a certain degree of misincorporation was also observed, especially evident for DNA polymerase β. Overall, clickable pyrimidine nucleotides could undergo repair and be a source of mutations, but the frequency of such events in the cell is unlikely to be considerable.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:作为碱基切除修复系统中的核心酶,尿嘧啶DNA糖基化酶(UDG)在维持基因组完整性和正常细胞周期中是必不可少的。其异常活性干预癌症和神经变性疾病。以前的基于等温扩增和成簇定期间隔短回文重复/Cas(CRISPR/Cas)系统的UDG测定灵敏度很好,但是在分析流程中遇到了并发症,时间,和探头设计。等温扩增后,CRISPR/Cas试剂应单独添加额外的手动步骤,并设计其指导RNA(gRNA),考虑到原型间隔区相邻基序(PAM)位点的存在。
    结果:我们在此描述了UDG-retardedCRISPR扩增测定,称为“URECA”。在乌雷卡,等温核酸(NA)扩增与CRISPR/Cas12a系统紧密结合构成一锅法,等温CRISPR扩增系统。设计具有尿嘧啶(U)碱基的UDG底物(US)的等温NA扩增以激活和促进CRISPR/Cas12a反应。这样的方案使我们能够设想UDG将通过切除U碱基并弄乱美国来停止等温CRISPR扩增反应。基于这个原则,该试验检测到UDG活性在50分钟内降至9.17×10-4U/mL。有了乌雷卡,我们完成了血浆和尿液中UDG活性的回收率测试,具有很高的精密度和重现性,并且可靠地测定了细胞提取物中的UDG活性。此外,我们验证了它筛选候选UDG抑制剂的能力,显示其在实际应用和药物发现中的潜力。
    结论:URECA提供了进一步的优点:i)该测定是无缝的。在目标识别之后,反应一步进行,没有任何中间步骤,ii)探头设计简单。与传统的基于CRISPR/Cas12a的检测方法不同,URECA在探针设计中不考虑PAM位点,因为Cas12a激活依赖于瞬时gRNA与单链DNA链的结合。通过合理设计对其他酶具有特异性的酶底物探针,同时保持作为等温CRISPR扩增模板的作用,URECA的检测原理将扩展到为各种生物酶设计生物传感器,临床意义。
    BACKGROUND: As a core enzyme in the base excision repair system, uracil DNA glycosylase (UDG) is indispensable in maintaining genomic integrity and normal cell cycles. Its abnormal activity intervenes in cancers and neurodegerative diseases. Previous UDG assays based on isothermal amplification and Clustered Regularly Interspaced Short Palindromic Repeats/Cas (CRISPR/Cas) system were fine in sensitivity, but exposed to complications in assay flow, time, and probe design. After isothermal amplification, a CRISPR/Cas reagent should be separately added with extra manual steps and its guide RNA (gRNA) should be designed, considering the presence of protospacer adjacent motif (PAM) site.
    RESULTS: We herein describe a UDG-REtarded CRISPR Amplification assay, termed \'URECA\'. In URECA, isothermal nucleic acid (NA) amplification and CRISPR/Cas12a system were tightly combined to constitute a one-pot, isothermal CRISPR amplification system. Isothermal NA amplification for a UDG substrate (US) with uracil (U) bases was designed to activate and boost CRISPR/Cas12a reaction. Such scheme enabled us to envision that UDG would halt the isothermal CRISPR amplification reaction by excising U bases and messing up the US. Based on this principle, the assay detected the UDG activity down to 9.17 x 10-4 U/mL in 50 min. With URECA, we fulfilled the recovery test of UDG activities in plasma and urine with high precision and reproducibility and reliably determined UDG activities in cell extracts. Also, we verified its capability to screen candidate UDG inhibitors, showing its potentials in practical application as well as drug discovery.
    CONCLUSIONS: URECA offers further merits: i) the assay is seamless. Following target recognition, the reactions proceed in one-step without any intervening steps, ii) probe design is simple. Unlike the conventional CRISPR/Cas12a-based assays, URECA does not consider the PAM site in probe design as Cas12a activation relies on instantaneous gRNA binding to single-stranded DNA strands. By rationally designing an enzyme substrate probe to be specific to other enzymes, while keeping a role as a template for isothermal CRISPR amplification, the detection principle of URECA will be expanded to devise biosensors for various enzymes of biological, clinical significance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA碱基编辑器可以直接编辑腺嘌呤(A),胞嘧啶(C),或鸟嘌呤(G),但目前没有用于直接胸腺嘧啶(T)编辑的基础编辑器。在这里,我们通过将Cas9切口酶(nCas9)与工程人类尿嘧啶DNA糖基化酶(UNG)变体融合,开发了两种无脱氨酶的基于糖基化酶的碱基编辑器,用于直接T编辑(gTBE)和C编辑(gCBE)。通过对培养的人类细胞中的UNG进行几轮结构知情的合理诱变,我们获得了具有高活性T-to-S的gTBE和gCBE(即,T到C或T到G)和C到G的转换,分别。此外,我们将gTBE/gCBE与最近使用其他蛋白质工程策略开发的gTBE/gCBE进行平行比较,并发现gTBE/gCBE显示性能优异。因此,我们提供了几个基本编辑,gTBE和gCBE,具有相应的工程UNG变体,扩大基础编辑器的定位范围。
    DNA base editors enable direct editing of adenine (A), cytosine (C), or guanine (G), but there is no base editor for direct thymine (T) editing currently. Here we develop two deaminase-free glycosylase-based base editors for direct T editing (gTBE) and C editing (gCBE) by fusing Cas9 nickase (nCas9) with engineered human uracil DNA glycosylase (UNG) variants. By several rounds of structure-informed rational mutagenesis on UNG in cultured human cells, we obtain gTBE and gCBE with high activity of T-to-S (i.e., T-to-C or T-to-G) and C-to-G conversions, respectively. Furthermore, we conduct parallel comparison of gTBE/gCBE with those recently developed using other protein engineering strategies, and find gTBE/gCBE show the outperformance. Thus, we provide several base editors, gTBEs and gCBEs, with corresponding engineered UNG variants, broadening the targeting scope of base editors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    G-三复合物是由三个G-束组成的富含G的寡核苷酸,由于其潜在的生物学功能和在生物传感方面的诱人性能而受到了广泛的关注。通过优化循环组成,DNA长度,和富G序列的5个侧翼碱基,发现了一个新的具有14个碱基的稳定的G-三链体序列(G3-F15),可以显着激活硫磺素T(ThT)的荧光,水溶性荧光染料。与G3-F15结合后ThT的荧光增强达到3200倍,这是迄今为止所有富含G的序列中最强的一个。通过圆二色性研究了G3-F15和G3-F15/ThT的构象。热稳定性测量表明G3-F15是高度稳定的G-三链体结构。通过荧光光谱法研究了不同金属阳离子存在下G3-F15和G3-F15/ThT的构象,圆二色性,和核磁共振。此外,使用G3-F15/ThT复合物作为荧光探针,开发了一种用于尿嘧啶-DNA糖基化酶活性的强大而简单的开启荧光传感器。本研究提出了一种新的系统策略来探索新的功能富G序列及其配体,这将促进它们在诊断中的应用,治疗,和生物传感。
    G-triplexes are G-rich oligonucleotides composed of three G-tracts and have absorbed much attention due to their potential biological functions and attractive performance in biosensing. Through the optimization of loop compositions, DNA lengths, and 5\'-flanking bases of G-rich sequences, a new stable G-triplex sequence with 14 bases (G3-F15) was discovered to dramatically activate the fluorescence of Thioflavin T (ThT), a water-soluble fluorogenic dye. The fluorescence enhancement of ThT after binding with G3-F15 reached 3200 times, which was the strongest one by far among all of the G-rich sequences. The conformations of G3-F15 and G3-F15/ThT were studied by circular dichroism. The thermal stability measurements indicated that G3-F15 was a highly stable G-triplex structure. The conformations of G3-F15 and G3-F15/ThT in the presence of different metal cations were studied thoroughly by fluorescent spectroscopy, circular dichroism, and nuclear magnetic resonance. Furthermore, using the G3-F15/ThT complex as a fluorescent probe, a robust and simple turn-on fluorescent sensor for uracil-DNA glycosylase activity was developed. This study proposes a new systematic strategy to explore new functional G-rich sequences and their ligands, which will promote their applications in diagnosis, therapy, and biosensing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA中碱基的改变构成基因组不稳定性的主要来源。据信碱基改变引发碱基切除修复(BER),产生干扰DNA复制的DNA修复中间体。这里,我们显示基因组尿嘧啶,一种常见的碱基改变,诱导DNA复制应激(RS)而不被BER处理。在没有尿嘧啶DNA糖基化酶(UNG)的情况下,基因组尿嘧啶积累到高水平,DNA复制叉慢下来,PrimPol介导的再灌注增强,在新生DNA中产生单链缺口。UNG缺陷细胞中的ATR抑制阻断尿嘧啶诱导的间隙的修复,增加复制叉崩溃和细胞死亡。值得注意的是,一部分癌细胞上调UNG2以抑制基因组尿嘧啶并限制RS,这些癌细胞对ATR抑制剂和增加基因组尿嘧啶的药物共同治疗过敏。这些结果揭示了未加工的基因组尿嘧啶作为RS的意外来源和癌细胞的可靶向脆弱性。
    Alterations of bases in DNA constitute a major source of genomic instability. It is believed that base alterations trigger base excision repair (BER), generating DNA repair intermediates interfering with DNA replication. Here, we show that genomic uracil, a common type of base alteration, induces DNA replication stress (RS) without being processed by BER. In the absence of uracil DNA glycosylase (UNG), genomic uracil accumulates to high levels, DNA replication forks slow down, and PrimPol-mediated repriming is enhanced, generating single-stranded gaps in nascent DNA. ATR inhibition in UNG-deficient cells blocks the repair of uracil-induced gaps, increasing replication fork collapse and cell death. Notably, a subset of cancer cells upregulates UNG2 to suppress genomic uracil and limit RS, and these cancer cells are hypersensitive to co-treatment with ATR inhibitors and drugs increasing genomic uracil. These results reveal unprocessed genomic uracil as an unexpected source of RS and a targetable vulnerability of cancer cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    单核苷酸多态性(SNPs)与许多生物过程密切相关。包括遗传疾病,肿瘤发生,和药物代谢。准确有效的SNP测定已被证明在药物基因组学和诊断中至关重要。在这里,基于双支点调控的Cas12a传感方法,建立了一个通用的高保真基因分型平台。不同于传统的单链或双链激活模式,双支点调节模式通过级联支点介导的链置换反应克服了原型间隔区相邻基序(PAM)的限制,这是高度普遍和超特定的。为了提高生物样品分析的灵敏度,通过使用脱氧胸苷取代的引物和尿嘧啶-DNA糖基化酶(UDG)处理,开发了一种改良的等温重组聚合酶扩增(RPA)策略,指定为RPA-UDG。在RPA-UDG中产生的含有单链立足点结构域的dsDNA产物允许进一步掺入双立足点调节的Cas12a平台,用于高保真人样品基因分型。我们用人类颊拭子样本区分rs429358和rs7412位点的ApoE基因的所有单核苷酸多态性,准确率为100%。此外,我们通过利用商业横向流动条设计基因分型结果的视觉读出,这为现场可部署的实施开辟了新的可能性。
    Single nucleotide polymorphisms (SNPs) are closely associated with many biological processes, including genetic disease, tumorigenesis, and drug metabolism. Accurate and efficient SNP determination has been proved pivotal in pharmacogenomics and diagnostics. Herein, a universal and high-fidelity genotyping platform is established based on the dual toeholds regulated Cas12a sensing methodology. Different from the conventional single stranded or double stranded activation mode, the dual toeholds regulated mode overcomes protospacer adjacent motif (PAM) limitation via cascade toehold mediated strand displacement reaction, which is highly universal and ultra-specific. To enhance the sensitivity for biological samples analysis, a modified isothermal recombinant polymerase amplification (RPA) strategy is developed via utilizing deoxythymidine substituted primer and uracil-DNA glycosylase (UDG) treatment, designated as RPA-UDG. The dsDNA products containing single stranded toehold domain generated in the RPA-UDG allow further incorporation with dual toeholds regulated Cas12a platform for high-fidelity human sample genotyping. We discriminate all the single-nucleotide polymorphisms of ApoE gene at rs429358 and rs7412 loci with human buccal swab samples with 100% accuracy. Furthermore, we engineer visual readout of genotyping results by exploiting commercial lateral flow strips, which opens new possibilities for field deployable implementation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    当前的碱基编辑(BE)使用DNA脱氨酶,包括胞苷BE(CBE)中的胞苷脱氨酶或腺嘌呤BE(ABE)中的腺嘌呤脱氨酶,以促进过渡核苷酸取代。将CBE或ABE与糖基化酶组合可以诱导有限的颠换突变。尽管如此,对能够产生替代突变类型的BE的关键需求仍然存在,如T>G校正。在这项研究中,我们利用预先训练的蛋白质语言模型来优化尿嘧啶-N-糖基化酶(UNG)变体,其对胸腺嘧啶(eTDG)的特异性改变.值得注意的是,经过两轮测试,只有不到50个顶级变体,超过50%的酶活性提高了1.5倍以上。当eTDG与nCas9融合时,它在小鼠中诱导了可编程的T-to-S(G/C)取代并纠正了db/db糖尿病突变(高达55%)。我们的发现不仅建立了开发新型BE的正交策略,而且还证明了蛋白质语言模型在没有大量特定任务训练数据的情况下优化酶的能力。
    Current base editors (BEs) use DNA deaminases, including cytidine deaminase in cytidine BE (CBE) or adenine deaminase in adenine BE (ABE), to facilitate transition nucleotide substitutions. Combining CBE or ABE with glycosylase enzymes can induce limited transversion mutations. Nonetheless, a critical demand remains for BEs capable of generating alternative mutation types, such as T>G corrections. In this study, we leveraged pre-trained protein language models to optimize a uracil-N-glycosylase (UNG) variant with altered specificity for thymines (eTDG). Notably, after two rounds of testing fewer than 50 top-ranking variants, more than 50% exhibited over 1.5-fold enhancement in enzymatic activities. When eTDG was fused with nCas9, it induced programmable T-to-S (G/C) substitutions and corrected db/db diabetic mutation in mice (up to 55%). Our findings not only establish orthogonal strategies for developing novel BEs but also demonstrate the capacities of protein language models for optimizing enzymes without extensive task-specific training data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号