Ultrafast

超快
  • 文章类型: Journal Article
    目的:虽然镇静通常用于儿科PET检查以保持诊断质量,它可能会导致副作用,并可能影响放射性示踪剂的生物分布。这项研究旨在研究使用超快速全身(TB)PET扫描仪和基于深度学习(DL)的衰减和散射校正(ASC)进行无镇静儿科PET成像的可行性。
    方法:这项回顾性研究包括35名4岁以下镇静儿科患者的TBPET(uExplorer)成像,以确定最小有效扫描时间。应用基于DL的ASC方法来增强PET定量。进行定量和定性评估以评估超快速DL-ASCPET的图像质量。随后使用五名未镇静的儿科患者来验证所提出的方法。
    结果:标准300秒和超快速15秒成像之间的比较,CT-ASC和DL-ASC超快15秒图像,以及非镇静和镇静患者的DL-ASC超快15秒图像,定性评分无显著差异,病变可检测性,和定量标准摄取值(SUV)(P=ns)。
    结论:这项研究表明,通过将超快速成像技术与基于DL的ASC相结合,可以有效地进行儿科PET成像而无需镇静。无镇静超快速PET成像的这一进步具有更广泛的临床应用潜力。
    OBJECTIVE: While sedation is routinely used in pediatric PET examinations to preserve diagnostic quality, it may result in side effects and may affect the radiotracer\'s biodistribution. This study aims to investigate the feasibility of sedation-free pediatric PET imaging using ultra-fast total-body (TB) PET scanners and deep learning (DL)-based attenuation and scatter correction (ASC).
    METHODS: This retrospective study included TB PET (uExplorer) imaging of 35 sedated pediatric patients under four years old to determine the minimum effective scanning time. A DL-based ASC method was applied to enhance PET quantification. Both quantitative and qualitative assessments were conducted to evaluate the image quality of ultra-fast DL-ASC PET. Five non-sedated pediatric patients were subsequently used to validate the proposed approach.
    RESULTS: Comparisons between standard 300-second and ultra-fast 15-second imaging, CT-ASC and DL-ASC ultra-fast 15-second images, as well as DL-ASC ultra-fast 15-second images in non-sedated and sedated patients, showed no significant differences in qualitative scoring, lesion detectability, and quantitative Standard Uptake Value (SUV) (P = ns).
    CONCLUSIONS: This study demonstrates that pediatric PET imaging can be effectively performed without sedation by combining ultra-fast imaging techniques with a DL-based ASC. This advancement in sedation-free ultra-fast PET imaging holds potential for broader clinical adoption.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    信息技术革命需要更大、更快的磁存储技术。全光学自旋切换(AOS)可能是一个解决方案,只有一个超快激光脉冲可以在1-10ps内忠实地将磁化从一个方向切换到另一个方向,没有磁性fi场。有两种类型的切换:一种是依赖于螺旋度的全光学自旋切换(HD-AOS),另一种是与螺旋度无关的全光学自旋切换(HID-AOS)。在几种合金中,一个单一的激光脉冲,有了suúcientfluence,可以切换旋转,但是大多数磁性材料需要多个脉冲。材料规格fic和激光规格fic特性都强烈影响开关过程。然而,潜在的机制仍在辩论中。随着整个研究fi领域走向应用,回顾过去十年取得的成就是非常合适的。这篇综述涵盖了过去十年中的一些主要实验和理论发展,并作为本fi领域的初学者的介绍和经验丰富的研究人员的总结。 .
    Information technology revolution demands bigger and faster magnetic storage. All-optical spin switching (AOS) may offer a solution, where an ultrafast laser pulse alone can switch magnetization from one direction to another faithfully within 1-10 ps, free of a magnetic field. There are two types of switching: One is the helicity-dependent all-optical spin switching (HD-AOS) and the other the helicity-independent all-optical spin switching (HID-AOS). In a few alloys, one single laser pulse, with sufficient fluence, can switch spin, but the majority of magnetic materials requires multiple pulses. Both material-specific and laser-specific properties strongly affect the switching process. However, the underlying mechanism is still under debate. As the entire research field moves toward applications, it is very appropriate to review what has been achieved in the last decade. This review covers some of the major experimental and theoretical developments within the last decade, and serves as an introduction to the uninitiated reader in this field and a summary for the seasoned researchers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:T2和T2*标测是定量磁共振成像的重要组成部分,为组织特征和病理学提供有价值的见解。单次方法可以通过采集多个读出回波串实现超快T2或T2*映射。然而,扩展的回声列车构成了挑战,例如图像质量受损和量化精度降低。
    目的:在本研究中,我们开发了一种用于超快T2和T2*映射的单次方法,并减少了回波串长度。
    方法:所提出的方法基于超快单发时空编码(SPEN)MRI,结合缩小的视场(FOV)和螺旋出入出入(OIOI)轨迹。具体来说,采用双轴SPEN激发方案将自旋信号激发到时空编码域中。采用具有高采集效率的OIOI轨迹来采集目标减小的FOV内的信号。通过非笛卡尔超分辨(SR)重建,在150ms内获得了12张具有不同回波时间的无混叠图像。随后使用导出的模型拟合这些图像以同时生成T2或T2*映射。
    结果:生成了精确且共同配准的T2和T2*图,与参考地图非常相似。数值模拟显示了与地面真值的基本一致性(R2>0.99)。在T2和T2*中观察到0.6%和1.7%的平均差,分别,在体内大鼠脑实验中与参考进行比较。此外,所提出的方法成功地获得了大鼠肾脏在自由呼吸模式下的T2和T2*映射,证明其优于缺乏呼吸导航的多射方法。
    结论:结果表明,所提出的方法可以实现超快和准确的T2和T2*作图,潜在地促进T2和T2*映射在需要高时间分辨率的场景中的应用。
    BACKGROUND: T2 and T2* mapping are crucial components of quantitative magnetic resonance imaging, offering valuable insights into tissue characteristics and pathology. Single-shot methods can achieve ultrafast T2 or T2* mapping by acquiring multiple readout echo trains. However, the extended echo trains pose challenges, such as compromised image quality and diminished quantification accuracy.
    OBJECTIVE: In this study, we develop a single-shot method for ultrafast T2 and T2* mapping with reduced echo train length.
    METHODS: The proposed method is based on ultrafast single-shot spatiotemporally encoded (SPEN) MRI combined with reduced field of view (FOV) and spiral out-in-out-in (OIOI) trajectory. Specifically, a biaxial SPEN excitation scheme was employed to excite the spin signal into the spatiotemporal encoding domain. The OIOI trajectory with high acquisition efficiency was employed to acquire signals within targeted reduced FOV. Through non-Cartesian super-resolved (SR) reconstruction, 12 aliasing-free images with different echo times were obtained within 150 ms. These images were subsequently fitted to generate T2 or T2* mapping simultaneously using a derived model.
    RESULTS: Accurate and co-registered T2 and T2* maps were generated, closely resembling the reference maps. Numerical simulations demonstrated substantial consistency (R2 > 0.99) with the ground truth values. A mean difference of 0.6% and 1.7% was observed in T2 and T2*, respectively, in in vivo rat brain experiments compared to the reference. Moreover, the proposed method successfully obtained T2 and T2* mappings of rat kidney in free-breathing mode, demonstrating its superiority over multishot methods lacking respiratory navigation.
    CONCLUSIONS: The results suggest that the proposed method can achieve ultrafast and accurate T2 and T2* mapping, potentially facilitating the application of T2 and T2* mapping in scenarios requiring high temporal resolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有机/无机混合系统为新型太阳能电池设计提供了巨大的潜力,该设计将有机发色团吸收特性的可调性与无机半导体的高电荷载流子迁移率相结合。然而,通常这样的材料组合没有显示出预期的性能:而ZnO,例如,基本上展示了成功应用于集光的所有必要特性,在电荷分离效率方面明显超过TiO2。这一缺陷的起源一直存在争议。本研究采用飞秒时间分辨光电子能谱和多体从头算计算来识别和量化导致在示例性有机/ZnO界面处抑制电荷分离的所有基本步骤。证明了电荷分离确实在超快(350fs)时间尺度上有效发生,但是电子在100ps的时间尺度上在界面处被重新捕获,随后被捕获在强束缚(0.7eV)混合激子状态中,寿命超过5µs。因此,最初成功的电荷分离,然后在界面处延迟电子捕获,导致明显低的电荷分离效率。这一发现为器件设计中的对策提供了足够大的时间框架,以成功地具体实现ZnO和,此外,邀请材料科学家重新审视各种以前废弃的混合系统中的电荷分离。
    Organic/inorganic hybrid systems offer great potential for novel solar cell design combining the tunability of organic chromophore absorption properties with high charge carrier mobilities of inorganic semiconductors. However, often such material combinations do not show the expected performance: while ZnO, for example, basically exhibits all necessary properties for a successful application in light-harvesting, it was clearly outpaced by TiO2 in terms of charge separation efficiency. The origin of this deficiency has long been debated. This study employs femtosecond time-resolved photoelectron spectroscopy and many-body ab initio calculations to identify and quantify all elementary steps leading to the suppression of charge separation at an exemplary organic/ZnO interface. It is demonstrated that charge separation indeed occurs efficiently on ultrafast (350 fs) timescales, but that electrons are recaptured at the interface on a 100 ps timescale and subsequently trapped in a strongly bound (0.7 eV) hybrid exciton state with a lifetime exceeding 5 µs. Thus, initially successful charge separation is followed by delayed electron capture at the interface, leading to apparently low charge separation efficiencies. This finding provides a sufficiently large time frame for counter-measures in device design to successfully implement specifically ZnO and, moreover, invites material scientists to revisit charge separation in various kinds of previously discarded hybrid systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    2D材料由于其在纳米范围内的极端厚度和独特的物理性质而被认为是下一代电子产品(纳米电子学)发展的关键因素。这种材料中光激发载流子的超快动力学受到其界面的强烈影响,因为2D材料的厚度远小于光穿透到其本体对应物中的典型深度和光激发载流子的平均自由程。在强激光场的存在下,光激发载流子与2D材料的界面势垒的碰撞显着改变了光激发的整体动力学,允许激光通过反激致辐射机制被导带/价带中的载流子直接吸收。可以使用多光子泵浦UV-Vis瞬态吸收光谱法监测相应的超快载流子动力学。在这次审查中,我们讨论了这种光谱学在各种二维材料中的基本概念和最新应用,包括过渡金属二硫属化物单层,拓扑绝缘体,和其他2D半导体结构。
    2D materials are considered a key element in the development of next-generation electronics (nanoelectronics) due to their extreme thickness in the nanometer range and unique physical properties. The ultrafast dynamics of photoexcited carriers in such materials are strongly influenced by their interfaces, since the thickness of 2D materials is much smaller than the typical depth of light penetration into their bulk counterparts and the mean free path of photoexcited carriers. The resulting collisions of photoexcited carriers with interfacial potential barriers of 2D materials in the presence of a strong laser field significantly alter the overall dynamics of photoexcitation, allowing laser light to be directly absorbed by carriers in the conduction/valence band through the inverse bremsstrahlung mechanism. The corresponding ultrafast carrier dynamics can be monitored using multiphoton-pumped UV-Vis transient absorption spectroscopy. In this review, we discuss the basic concepts and recent applications of this spectroscopy for a variety of 2D materials, including transition-metal dichalcogenide monolayers, topological insulators, and other 2D semiconductor structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项研究中,通过稳态和时间分辨光谱技术,系统地研究了光学激发的棘突酮在各种溶剂中的振动特性以及红色和橙色状态的橙色类胡萝卜素蛋白(OCP)。时间分辨实验,采用瞬态吸收(TA)和飞秒受激拉曼光谱(FSRS),揭示了OCP光活化过程中的不同状态。时间分辨研究表明,在OCP中类胡萝卜素进化的初始140fs期间,位于S1状态以上的退出状态的振动特征,在OCP中没有松驰的松驰S1状态的振动特征,以及OCP中高度激发基态(GS)的更鲁棒特征。OCP和溶剂之间S1状态振动群体特征的差异归因于OCP中棘突酮的不同构象和酮基处的氢键形成了短寿命的分子内电荷转移(ICT)状态。OCP中热GS的振动动力学表明,与溶剂中的棘酮相比,基态C=C振动的红移更为明显,因此表明GS的异常热形式。该研究提出了OCP的光活化机制的假设,强调纵向拉伸模式下的高水平激励作为驱动力。总之,振动特征的比较揭示了OCP中能量耗散的独特动力学,提供对光活化机制的见解,并强调蛋白质环境对类胡萝卜素行为的影响。该研究强调了振动分析在理解早期OCP光活化所涉及的复杂过程中的重要性。
    In this study, the vibrational characteristics of optically excited echinenone in various solvents and the Orange Carotenoid Protein (OCP) in red and orange states are systematically investigated through steady-state and time-resolved spectroscopy techniques. Time-resolved experiments, employing both Transient Absorption (TA) and Femtosecond Stimulated Raman Spectroscopy (FSRS), reveal different states in the OCP photoactivation process. The time-resolved studies indicate vibrational signatures of exited states positioned above the S1 state during the initial 140 fs of carotenoid evolution in OCP, an absence of a vibrational signature for the relaxed S1 state of echinenone in OCP, and more robust signatures of a highly excited ground state (GS) in OCP. Differences in S1 state vibration population signatures between OCP and solvents are attributed to distinct conformations of echinenone in OCP and hydrogen bonds at the keto group forming a short-lived intramolecular charge transfer (ICT) state. The vibrational dynamics of the hot GS in OCP show a more pronounced red shift of ground state CC vibration compared to echinenone in solvents, thus suggesting an unusually hot form of GS. The study proposes a hypothesis for the photoactivation mechanism of OCP, emphasizing the high level of vibrational excitation in longitudinal stretching modes as a driving force. In conclusion, the comparison of vibrational signatures reveals unique dynamics of energy dissipation in OCP, providing insights into the photoactivation mechanism and highlighting the impact of the protein environment on carotenoid behavior. The study underscores the importance of vibrational analysis in understanding the intricate processes involved in early phase OCP photoactivation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    拓扑绝缘体(TI)对于依赖于狄拉克表面态(DSS)的各种电子和光电设备具有巨大的潜力,包括自旋电子器件和热电器件,以及太赫兹探测器。DSS内的电子行为在此类器件的性能中起着关键作用。预期DSS通过机械剥离出现在三维(3D)TI的表面上。然而,表面终止原子构型和相应的能带结构并不总是均匀的。为了研究表面终止原子构型对电子动力学的影响,我们仔细检查了晶体3DTI(Bi2Se3)剥离表面的电子动力学随时间的变化,空间,能源决议。根据我们全面的能带结构计算,我们发现在其中一个Se封端的表面上,DSS位于体带隙内,在该区域内没有其他表面状态。在这个特殊的表面上,导带内的光激发电子有效地向DSS弛豫,并倾向于长时间停留在狄拉克点。值得强调的是,DSS的这些独特特征仅在该特定表面上观察到。
    Topological insulators (TI) hold significant potential for various electronic and optoelectronic devices that rely on the Dirac surface state (DSS), including spintronic and thermoelectric devices, as well as terahertz detectors. The behavior of electrons within the DSS plays a pivotal role in the performance of such devices. It is expected that DSS appear on a surface of three dimensional(3D) TI by mechanical exfoliation. However, it is not always the case that the surface terminating atomic configuration and corresponding band structures are homogeneous. In order to investigate the impact of surface terminating atomic configurations on electron dynamics, we meticulously examined the electron dynamics at the exfoliated surface of a crystalline 3D TI (Bi 2 Se 3 ) with time, space, and energy resolutions. Based on our comprehensive band structure calculations, we found that on one of the Se-terminated surfaces, DSS is located within the bulk band gap, with no other surface states manifesting within this region. On this particular surface, photoexcited electrons within the conduction band effectively relax towards DSS and tend to linger at the Dirac point for extended periods of time. It is worth emphasizing that these distinct characteristics of DSS are exclusively observed on this particular surface.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在Zn阳极表面构建人造固体电解质界面被认为是抑制锌枝晶和副反应的一种有吸引力的方法,而目前的技术是复杂和耗时的。这里,通过超快化学溶液反应,在Zn阳极表面(表示为ZWO@Zn)上原位构造了坚固的锌钨酸锌(ZnWO4)层。综合表征和理论计算表明,ZWO层能够有效调节界面电场分布,促进Zn2+均匀扩散,从而促进Zn2+的均匀成核和抑制锌枝晶。此外,ZWO层可以防止Zn/水之间的直接接触并增加析氢反应的超电势以消除副反应。因此,原位构造的ZWO层促进了ZWO@Zn||Ti电池的显着可逆性,在ZWO@Zn||ZWO@Zn电池中,在1.0mAcm-2下实现99.36%的令人印象深刻的库仑效率,在1.0mAcm-2下超过1800小时的前所未有的循环寿命,整体ZWO@Zn||VS2电池运行稳定可靠。这项工作提供了一个简单的,低成本,和超快的途径来制作保护层,以推动水性锌金属电池的进步。
    Constructing artificial solid electrolyte interface on the Zn anode surface is recognized as an appealing method to inhibit zinc dendrites and side reactions, whereas the current techniques are complex and time-consuming. Here, a robust and zincophilic zinc tungstate (ZnWO4) layer has been in situ constructed on the Zn anode surface (denoted as ZWO@Zn) by an ultrafast chemical solution reaction. Comprehensive characterizations and theoretical calculations demonstrate that the ZWO layer can effectively modulate the interfacial electric field distribution and promote the Zn2+ uniform diffusion, thus facilitating the uniform Zn2+ nucleation and suppressing zinc dendrites. Besides, ZWO layer can prevent direct contact between the Zn/water and increase the hydrogen evolution reaction overpotential to eliminate side reactions. Consequently, the in situ constructed ZWO layer facilitates remarkable reversibility in the ZWO@Zn||Ti battery, achieving an impressive Coulombic efficiency of 99.36 % under 1.0 mA cm-2, unprecedented cycling lifespan exceeding 1800 h under 1.0 mA cm-2 in ZWO@Zn||ZWO@Zn battery, and a steady and reliable operation of the overall ZWO@Zn||VS2 battery. The work provides a simple, low cost, and ultrafast pathway to crafting protective layers for driving advancements in aqueous zinc-metal batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在基因组学研究领域内的许多测序数据集中需要覆盖量化。然而,大多数现有工具无法提供全面的统计结果,并且从多线程中获得的性能收益有限。这里,我们介绍PanDepth,一种用于计算测序比对覆盖率和深度的超快高效工具。PanDepth在来自测序数据的BAM和CRAM格式比对文件的计算时间和内存效率方面优于其他工具。无论读取长度。它采用染色体并行计算和优化的数据结构,导致超快的计算速度和内存效率。它接受排序或未排序的BAM和CRAM格式的对齐文件以及GTF,GFF和BED格式的间隔文件或特定的窗口大小。当提供参考基因组序列和启用GC含量计算的选项时,PanDepth包括GC内容统计,提高了拷贝数变异分析的准确性和可靠性。总的来说,PanDepth是加速基因组学研究中的科学发现的强大工具。
    Coverage quantification is required in many sequencing datasets within the field of genomics research. However, most existing tools fail to provide comprehensive statistical results and exhibit limited performance gains from multithreading. Here, we present PanDepth, an ultra-fast and efficient tool for calculating coverage and depth from sequencing alignments. PanDepth outperforms other tools in computation time and memory efficiency for both BAM and CRAM-format alignment files from sequencing data, regardless of read length. It employs chromosome parallel computation and optimized data structures, resulting in ultrafast computation speeds and memory efficiency. It accepts sorted or unsorted BAM and CRAM-format alignment files as well as GTF, GFF and BED-formatted interval files or a specific window size. When provided with a reference genome sequence and the option to enable GC content calculation, PanDepth includes GC content statistics, enhancing the accuracy and reliability of copy number variation analysis. Overall, PanDepth is a powerful tool that accelerates scientific discovery in genomics research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超快短波长红外(SWIR)光电检测对于新兴的自动视觉和空间映射技术非常感兴趣。与外延相比,胶体量子点(QD)在SWIR光电检测中脱颖而出(In,Ga)As或(Hg,Cd)Te半导体结合了尺寸可调的带隙和具有成本效益的适用性,基于解决方案的处理。然而,实现超快,ns级响应时间仍然是基于QD的SWIR光电二极管(QDPDs)的一个突出挑战。这里,我们报告了在SWIR波长下运行的基于PbS的QDPDs中记录的4ns响应时间,结果达到了基于胶体量子点的SWIR激光雷达的要求。这些超快QDPD结合了薄有源层以减少载流子传输时间和小面积以抑制慢电容放电。通过实施浓度梯度配体交换方法,在这些超薄QDPDs中制造了高质量的p-n结。此外,这些超薄QDPDs在1330nm处获得42%的外部量子效率,由于通过在QDPD内形成Fabry-Perot腔和从PbSQD膜高效提取光生电荷载流子(98%),光吸收增强了2.5倍。基于这些结果,我们估计,电荷载流子迁移率的进一步增加可以导致PbSQDPDs具有sub-ns响应时间。本文受版权保护。保留所有权利。
    Ultrafast short-wavelength infrared (SWIR) photodetection is of great interest for emerging automated vision and spatial mapping technologies. Colloidal quantum dots (QDs) stand out for SWIR photodetection compared to epitaxial (In,Ga)As or (Hg,Cd)Te semiconductors by their combining a size-tunable bandgap and a suitability for cost-effective, solution-based processing. However, achieving ultrafast, nanosecond-level response time has remained an outstanding challenge for QD-based SWIR photodiodes (QDPDs). Here, record 4 ns response time in PbS-based QDPDs that operate at SWIR wavelengths is reported, a result reaching the requirement of SWIR light detection and ranging based on colloidal QDs. These ultrafast QDPDs combine a thin active layer to reduce the carrier transport time and a small area to inhibit slow capacitive discharging. By implementing a concentration gradient ligand exchange method, high-quality p-n junctions are fabricated in these ultrathin QDPDs. Moreover, these ultrathin QDPDs attain an external quantum efficiency of 42% at 1330 nm, due to a 2.5-fold enhanced light absorption through the formation of a Fabry-Perot cavity within the QDPD and the highly efficient extraction (98%) of photogenerated charge carriers. Based on these results, it is estimated that a further increase of the charge-carrier mobility can lead to PbS QDPDs with sub-nanosecond response time.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号