Tryptophan and tyrosine fluorescence

  • 文章类型: Journal Article
    包涵体(IBs)是由于重组蛋白在大肠杆菌中过表达而形成的蛋白聚集体。尽管需要额外的加工步骤,但IBs的形成是重组蛋白生产的有价值的策略。即,隔离,溶解和重折叠。蛋白质重折叠的工业过程开发是一项劳动密集型任务,主要基于经验方法而不是知识驱动的策略。知识驱动的流程开发的先决条件是可靠的监控策略。这项工作探索了内在色氨酸和酪氨酸荧光用于实时和原位监测蛋白质重折叠的潜力。与通常建立的过程分析技术(PAT)相比,该技术显示了高灵敏度,可重复测量蛋白质浓度低至0.01gL-1。重折叠过程中蛋白质构象的变化反映为色氨酸和酪氨酸荧光光谱最大值位置的变化以及信号强度的变化。峰值位置的移动,表示为光谱的平均发射波长,与折叠中间体的量相关,而强度积分与聚集程度相关。这些相关性被实现为机械模型中的观察函数。在具有不同结构复杂性的三种不同蛋白质的重折叠上证明了该技术的多功能性和可转移性。该技术还成功地应用于检测添加剂和工艺模式对重折叠工艺效率的影响。因此,提出的方法提出了一个通用和可靠的PAT工具,使蛋白质重折叠的实时过程监测。
    Inclusion bodies (IBs) are protein aggregates formed as a result of overexpression of recombinant protein in E. coli. The formation of IBs is a valuable strategy of recombinant protein production despite the need for additional processing steps, i.e., isolation, solubilization and refolding. Industrial process development of protein refolding is a labor-intensive task based largely on empirical approaches rather than knowledge-driven strategies. A prerequisite for knowledge-driven process development is a reliable monitoring strategy. This work explores the potential of intrinsic tryptophan and tyrosine fluorescence for real-time and in situ monitoring of protein refolding. In contrast to commonly established process analytical technology (PAT), this technique showed high sensitivity with reproducible measurements for protein concentrations down to 0.01 g L - 1 . The change of protein conformation during refolding is reflected as a shift in the position of the maxima of the tryptophan and tyrosine fluorescence spectra as well as change in the signal intensity. The shift in the peak position, expressed as average emission wavelength of a spectrum, was correlated to the amount of folding intermediates whereas the intensity integral correlates to the extent of aggregation. These correlations were implemented as an observation function into a mechanistic model. The versatility and transferability of the technique were demonstrated on the refolding of three different proteins with varying structural complexity. The technique was also successfully applied to detect the effect of additives and process mode on the refolding process efficiency. Thus, the methodology presented poses a generic and reliable PAT tool enabling real-time process monitoring of protein refolding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    血浆的自体荧光已被广泛认为是一种前瞻性的疾病筛查方法。然而,对这种内在荧光的评估主要是现象学的,它的起源仍然没有被完全理解,使其在临床实践中的使用复杂化。在这里,我们将详细评估分析能力,可变性,和血浆蛋白荧光的形成基于激发-发射矩阵的开放数据集测量的300名疑似结直肠癌患者,和我们的支持模型实验。使用高分辨率尺寸排阻色谱结合综合光谱分析,我们展示,第一次,HSA在可见光谱范围内(激发波长>350nm)的血浆荧光形成中的主导作用,可能是由其氧化修饰引起的。此外,色氨酸发射的诊断价值,以及蛋白质的酪氨酸荧光和可见荧光通过建立基于树的分类模型来显示,该模型使用一小部分物理可解释的荧光特征来区分对照组和癌症患者,准确率>80%。所获得的结果扩展了当前用于分析血浆荧光的理解和方法,并为新型的基于自发荧光的疾病筛查方法铺平了道路。
    Autofluorescence of blood plasma has been broadly considered as a prospective disease screening method. However, the assessment of such intrinsic fluorescence is mostly phenomenological, and its origin is still not fully understood, complicating its use in the clinical practice. Here we present the detailed evaluation of analytical capabilities, variability, and formation of blood plasma protein fluorescence based on the open dataset of excitation-emission matrices measured for ∼300 patients with suspected colorectal cancer, and our supporting model experiments. Using high-resolution size-exclusion chromatography coupled with comprehensive spectral analysis, we demonstrate, for the first time, the dominant role of HSA in the formation of blood plasma fluorescence in the visible spectral range (excitation wavelength >350 nm), presumably caused by its oxidative modifications. Furthermore, the diagnostic value of the tryptophan emission, as well as of the tyrosine fluorescence and visible fluorescence of proteins is shown by building a tree-based classification model that uses a small subset of physically interpretable fluorescence features for distinguishing between the control group and cancer patients with >80% accuracy. The obtained results extend current understanding and approaches used for the analysis of blood plasma fluorescence and pave the way for novel autofluorescence-based disease screening methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号