Triplet-triplet energy transfer

  • 文章类型: Journal Article
    光点击反应结合了光驱动过程和经典点击化学提供的优势,并发现了从表面功能化,聚合物共轭,光交联,和蛋白质标记。尽管取得了这些进展,大多数光点击反应对紫外光的依赖性对它们的一般实施构成了严重的障碍,因为这种光可以被系统中的其他分子吸收,导致它们的降解或不需要的反应性。然而,开发一个简单而有效的系统来实现向变色的光点击转换仍然具有挑战性。这里,我们引入三重态-三重态能量转移作为一种快速和选择性的方式来实现可见光诱导的光点击反应。具体来说,我们表明,在催化量(少至5mol%)的光敏剂存在下,9,10-菲醌(PQs)可以有效地与富电子烯烃(ERAs)反应。光环加成反应可以在绿色(530nm)或橙色(590nm)光照射下实现,表示与经典PQ-ERA系统相比超过100nm的红移。此外,通过结合适当的反应物,我们建立一个正交的,蓝光和绿光诱导的光点击反应系统,其中产物分布可以通过选择光的颜色来精确控制。
    Photoclick reactions combine the advantages offered by light-driven processes and classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photo-crosslinking, and protein labeling. Despite these advances, the dependency of most of the photoclick reactions on UV light poses a severe obstacle for their general implementation, as this light can be absorbed by other molecules in the system resulting in their degradation or unwanted reactivity. However, the development of a simple and efficient system to achieve bathochromically shifted photoclick transformations remains challenging. Here, we introduce triplet-triplet energy transfer as a fast and selective way to enable visible light-induced photoclick reactions. Specifically, we show that 9,10-phenanthrenequinones (PQs) can efficiently react with electron-rich alkenes (ERAs) in the presence of a catalytic amount (as little as 5 mol %) of photosensitizers. The photocycloaddition reaction can be achieved under green (530 nm) or orange (590 nm) light irradiation, representing a bathochromic shift of over 100 nm as compared to the classical PQ-ERAs system. Furthermore, by combining appropriate reactants, we establish an orthogonal, blue and green light-induced photoclick reaction system in which the product distribution can be precisely controlled by the choice of the color of light.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用于光化学的正交光响应系统的开发,生物化学和其他领域已被证明具有挑战性。我们在此报道了一种用于DNA双链体的位点选择性光交联的方法。将二苯乙烯对引入DNA双链体中,并将钌络合物与形成三链体的寡核苷酸缀合。我们证明,当钌络合物由于三链体的形成而紧密靠近时,在可见光照射下发生了二苯乙烯对的[22]光环加成。当钌络合物不接近二苯乙烯对时,不发生反应。所使用的可见光的波长具有比直接激发二苯乙烯所需的UV光的波长更低的能量。量子化学计算表明,钌配合物通过三重态-三重态能量转移催化光环加成。使用带有两个二苯乙烯对的DNA双链体作为底物,评估了该光交联系统的位点选择性;我们表明,交联位点受到与钌络合物连接的寡核苷酸序列的精确调节。由于这种方法不需要正交光响应分子,它将有助于构建复杂的光响应DNA电路,纳米设备和生物工具。
    We herein report a method for site-selective photo-crosslinking of a DNA duplex. A stilbene pair was introduced into a DNA duplex and a ruthenium complex was conjugated with a triplex-forming oligonucleotide. We demonstrated that [2+2] photocycloaddition of the stilbene pair occurred upon irradiation with visible light when the ruthenium complex was in close proximity due to triplex formation. No reaction occurred when the ruthenium complex was not in proximity to the stilbene pair. The wavelength of visible light used was of lower energy than the wavelength of UV light necessary for direct excitation of stilbene. Quantum chemical calculation indicated that ruthenium complex catalyzed the photocycloaddition via triplet-triplet energy transfer. Site selectivity of this photo-crosslinking system was evaluated using a DNA duplex bearing two stilbene pairs as a substrate; we showed that the site of crosslinking was precisely regulated by the sequence of the oligonucleotide linked to the ruthenium complex. Since this method does not require orthogonal photoresponsive molecules, it will be useful in construction of complex photoresponsive DNA circuits, nanodevices and biological tools.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    表面陷阱态(STSs)的存在是影响量子点(QDs)电子和光学性质的关键因素之一,然而,STS如何影响量子点的确切机制尚不清楚。在这里,我们使用飞秒瞬态吸收光谱法证明了STS对CdSeQD中电子转移和从CdSe到表面受体的三重态-三重态能量转移(TTET)的影响。三种类型的胶体CdSe量子点,每个都含有不同程度的STS,如光致发光和X射线光电子能谱所证明的,被雇用。时间分辨发射和瞬态吸收光谱表明,STS可以有效地抑制带边发射,导致量子点中光电子的寿命从17.1ns显著降低到4.9ns。此外,对TTET过程的研究表明,STS可以抑制三重态激子的产生,有效地抑制带边发射,导致从CdSeQD到表面受体的TTET显着减少。这项工作为STS在塑造量子点光电特性方面的影响提供了证据,使其成为在涉及电子和能量转移的各种基于量子点的光电应用中理解和操纵STS的有价值的参考点。
    The presence of surface trap states (STSs) is one of the key factors to affect the electronic and optical properties of quantum dots (QDs), however, the exact mechanism of how STSs influence QDs remains unclear. Herein, we demonstrated the impact of STSs on electron transfer in CdSe QDs and triplet-triplet energy transfer (TTET) from CdSe to surface acceptor using femtosecond transient absorption spectroscopy. Three types of colloidal CdSe QDs, each containing various degrees of STSs as evidenced by photoluminescence and X-ray photoelectron spectroscopy, were employed. Time-resolved emission and transient absorption spectra revealed that STSs can suppress band-edge emission effectively, resulting in a remarkable decrease in the lifetime of photoelectrons in QDs from 17.1 ns to 4.9 ns. Moreover, the investigation of TTET process revealed that STSs can suppress the generation of triplet exciton and effectively inhibit band-edge emission, leading to a significant decrease in TTET from CdSe QDs to the surface acceptor. This work presented evidence for STSs influence in shaping the optoelectronic properties of QDs, making it a valuable point of reference for understanding and manipulating STSs in diverse QDs-based optoelectronic applications involving electron and energy transfer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    制备了Bodipy(BDP)-perylenebisimide(PBI)供体-受体二组/三组,以研究自旋轨道电荷转移系统间交叉(SOCT-ISC)。对于BDP-PBI-3,其中BDP连接在PBI的酰亚胺位置,观察到比海湾取代的衍生物BDP-PBI-1(ΦΔ=30%)更高的单态氧量子产率(ΦΔ=85%)。飞秒瞬态吸收光谱表明BDP-PBI-3中的Frster共振能量转移(FRET;40.4ps)和电荷分离(CS;1.55ns)缓慢,而对于BDP-PBI-1,CS需要2.8ps。对于三联体BDP-PBI-2,观察到超快FRET(149fs)和CS(4.7ps)过程,随后的电荷重组(CR)占用5.8ns,并且填充长寿命3PBI*(179.8μs)状态。BDP-PBI-3的纳秒瞬态吸收光谱表明,CR给出上三重激发态(3BDP*),通过缓慢的分子内三重态能量转移(14.5μs),3PBI*状态最终被填充,表明SOCT-ISC中涉及上三元组状态。时间分辨电子顺磁共振波谱显示,自由基对ISC(RPISC)和SOCT-ISC都对ISC有贡献。(e,e,e,e,e,e)观察到通过RPISC机制形成的三重态,由于S-T+1/T0状态混合。
    Bodipy (BDP)-perylenebisimide (PBI) donor-acceptor dyads/triad were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). For BDP-PBI-3, in which BDP was attached at the imide position of PBI, higher singlet oxygen quantum yield (ΦΔ =85 %) was observed than the bay-substituted derivative BDP-PBI-1 (ΦΔ =30 %). Femtosecond transient absorption spectra indicate slow Förster resonance energy transfer (FRET; 40.4 ps) and charge separation (CS; 1.55 ns) in BDP-PBI-3, while for BDP-PBI-1, CS takes 2.8 ps. For triad BDP-PBI-2, ultrafast FRET (149 fs) and CS (4.7 ps) process were observed, the subsequent charge recombination (CR) takes 5.8 ns and long-lived 3 PBI* (179.8 μs) state is populated. Nanosecond transient absorption spectra of BDP-PBI-3 show that the CR gives upper triplet excited state (3 BDP*) and subsequently, via a slow intramolecular triplet energy transfer (14.5 μs), the 3 PBI* state is finally populated, indicating that upper triplet state is involved in SOCT-ISC. Time-resolved electron paramagnetic resonance spectroscopy revealed that both radical pair ISC (RP ISC) and SOCT-ISC contribute to the ISC. A rare electron spin polarization of (e, e, e, e, e, e) was observed for the triplet state formed via the RP ISC mechanism, due to the S-T+1 /T0 states mixing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号