Tough hydrogel

坚韧的水凝胶
  • 文章类型: Journal Article
    引入牺牲键是提高水凝胶韧性的常用方法。许多牺牲债券已被广泛研究,但是牺牲效率从未被研究过。在这项研究中,制备了含有羧基-锆(-COO--Zr4)牺牲键的高度缠结聚合物链的聚丙烯酰胺水凝胶,以研究聚合物链缠结对牺牲键效率的影响。与化学交联点不同,致密的物理缠结不会影响水凝胶的韧性(〜43MJ/m3),但会显著提高拉伸强度(两倍)和杨氏模量(六倍)。物理缠结使链条在应力下滑动和调整网络结构,这使得更多的聚合物链和牺牲键参与变形过程。因此,密集的缠结将大大提高牺牲效率。然而,高密度的化学交联点将限制牺牲效率的提高,这归因于物理纠缠的滑动限制。-COO--Zr4+增韧的高缠结聚丙烯酰胺水凝胶具有优异的承载能力。这项研究为设计具有超高强度和韧性的水凝胶提供了一种新颖的策略,这为许多用于工程材料的水凝胶的发展铺平了道路。
    Introducing sacrificial bonds is a common method for increasing the toughness of hydrogels. Many sacrificial bonds have been extensively investigated, but the sacrifice efficiency has never been studied. In this study, polyacrylamide hydrogels with highly entangled polymer chains containing carboxyl-zirconium (-COO--Zr4+) sacrificial bonds are prepared to study the effect of polymer chain entanglement on the sacrificial bond efficiency. Unlike chemical crosslinking points, the dense physical entanglements do not affect the toughness (∼43 MJ/m3) of hydrogels but significantly improve the tensile strength (by two times) and Young\'s modulus (by six times). Physical entanglements enable the chains to slide and adjust the network structure under stress, which enables more polymer chains and sacrificial bonds to participate in the deformation process. Therefore, dense entanglements will greatly improve the sacrifice efficiency. However, a high density of chemical crosslinking points will limit the improvement in the sacrifice efficiency, which is attributed to the sliding limitations because of physical entanglement. The highly entangled polyacrylamide hydrogels toughened by -COO--Zr4+ have an excellent load-bearing capacity. This study provides a novel strategy for designing hydrogels with ultra-high strength and toughness, which paves the way for the development of many hydrogels used in engineering materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有无机杂化交联的机械坚固且离子导电的水凝胶聚(丙烯酰胺-co-2-丙烯酰胺基-2-甲基丙磺酸盐-锂)/TiO2/SiO2(P(AM-co-AMPSLi)/TiO2/SiO2)通过乙烯基三乙氧基硅烷(VTES)和钛酸四丁酯(TBOT)的原位溶胶-凝胶反应,和丙烯酰胺(AM)的原位自由基共聚,2-丙烯酰胺-2-甲基丙磺酸锂(AMPSLi),和乙烯基-SiO2。由于通过AMPS与Li2CO3的反应引入磺酸基团和Li+,离子水凝胶的电导率可以达到0.19Sm-1。乙烯基SiO2和纳米TiO2在这种混合水凝胶中用作多功能混合交联剂和填料。混合水凝胶显示出高拉伸强度(0.11-0.33MPa)和断裂伸长率(98-1867%),超高压缩强度(0.28-1.36MPa),一定的抗疲劳性,自我修复,和自粘性能,这是由于TiO2和SiO2之间的共价键,以及P(AM-co-AMPSLi)链和SiO2,以及TiO2和P(AM-co-AMPSLi)链之间的非共价键,以及有机框架。此外,比电容,能量密度,在0.05Ag-1的电流密度下,基于离子混合水凝胶电解质的超级电容器的功率密度分别为2.88Fg-1、0.09Whkg-1和3.07kWkg-1。因此,离子混合水凝胶显示出巨大的前景作为灵活的储能装置。
    Mechanically robust and ionically conductive hydrogels poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonate-lithium)/TiO2/SiO2 (P(AM-co-AMPSLi)/TiO2/SiO2) with inorganic hybrid crosslinking are fabricated through dual in situ sol-gel reaction of vinyltriethoxysilane (VTES) and tetrabutyl titanate (TBOT), and in situ radical copolymerization of acrylamide (AM), 2-acrylamide-2-methylpropanesulfonate-lithium (AMPSLi), and vinyl-SiO2. Due to the introduction of the sulfonic acid groups and Li+ by the reaction of AMPS with Li2CO3, the conductivity of the ionic hydrogel can reach 0.19 S m-1. Vinyl-SiO2 and nano-TiO2 are used in this hybrid hydrogel as both multifunctional hybrid crosslinkers and fillers. The hybrid hydrogels demonstrate high tensile strength (0.11-0.33 MPa) and elongation at break (98-1867%), ultrahigh compression strength (0.28-1.36 MPa), certain fatigue resistance, self-healing, and self-adhesive properties, which are due to covalent bonds between TiO2 and SiO2, as well as P(AM-co-AMPSLi) chains and SiO2, and noncovalent bonds between TiO2 and P(AM-co-AMPSLi) chains, as well as the organic frameworks. Furthermore, the specific capacitance, energy density, and power density of the supercapacitors based on ionic hybrid hydrogel electrolytes are 2.88 F g-1, 0.09 Wh kg-1, and 3.07 kW kg-1 at a current density of 0.05 A g-1, respectively. Consequently, the ionic hybrid hydrogels show great promise as flexible energy storage devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大多数水凝胶的机械性能较差,严重限制了它们的潜在应用,并且已经引入了许多方法来制造更坚固和耐用的示例。然而,这些系统由不可生物降解的聚合物组成,这限制了它们在组织工程中的应用。在这里,我们专注于制造和研究疏水链段对离子交联性能的影响,可生物降解的水凝胶。一种可生物降解的,与疏水氨基酸共轭的聚(γ-谷氨酸)聚合物,1-苯丙氨酸乙酯(Phe),与离子交联基团一起,阿仑膦酸(Aln)产生γ-PGA-Aln-Phe,最初是合成的。通过时间扫描振荡测试的流变学评估表明,疏水结构域的存在加速了凝胶化。比较有和没有疏水结构域的凝胶,发现γ-PGA-Aln-Phe的抗压强度高六倍,在乙二胺四乙酸溶液中表现出更长的稳定性。持续长达一个月。重要的是,发现疏水区域对凝胶的机械强度和离子交联特性的稳定性的贡献是制造坚韧的水凝胶的主要因素。因此,这项研究为机械增强提供了新的策略,并通过添加疏水结构域保留了离子交联位点。艰难的发展,本文报道的生物可降解水凝胶将为生物材料领域的应用开辟新的可能性。
    Most hydrogels have poor mechanical properties, severely limiting their potential applications, and numerous approaches have been introduced to fabricate more robust and durable examples. However, these systems consist of nonbiodegradable polymers which limit their application in tissue engineering. Herein, we focus on the fabrication and investigate the influence of hydrophobic segments on ionic cross-linking properties for the construction of a tough, biodegradable hydrogel. A biodegradable, poly(γ-glutamic acid) polymer conjugated with a hydrophobic amino acid, l-phenylalanine ethyl ester (Phe), together with an ionic cross-linking group, alendronic acid (Aln) resulting in γ-PGA-Aln-Phe, was initially synthesized. Rheological assessments through time sweep oscillation testing revealed that the presence of hydrophobic domains accelerated gelation. Comparing gels with and without hydrophobic domains, the compressive strength of γ-PGA-Aln-Phe was found to be six times higher and exhibited longer stability properties in ethylenediaminetetraacetic acid solution, lasting for up to a month. Significantly, the contribution of the hydrophobic domains to the mechanical strength and stability of ionic cross-linking properties of the gel was found to be the dominant factor for the fabrication of a tough hydrogel. As a result, this study provides a new strategy for mechanical enhancement and preserves ionic cross-linked sites by the addition of hydrophobic domains. The development of tough, biodegradable hydrogels reported herein will open up new possibilities for applications in the field of biomaterials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于连续葡萄糖监测的胰岛素自动输送正在彻底改变胰岛素依赖型糖尿病的治疗方式。然而,这些系统的广泛采用仍然面临挑战,包括单独的葡萄糖传感器的要求,复杂的电子和算法,以及需要大量的用户输入来操作这些昂贵的疗法。在这里,我们报告了一种以用户为中心的葡萄糖反应插管,用于无电子设备的胰岛素输送.套管-由坚韧的,通过一锅溶剂交换方法形成的弹性体-水凝胶杂化膜-改变渗透性以在生理相关的变化的葡萄糖水平下迅速释放胰岛素,提供简单和自动的胰岛素输送,没有额外的硬件或软件。在胰岛素缺乏的糖尿病小鼠中评估了两种套管原型。第一个插管-一端密封,皮下插入的原型体使血糖水平正常3天,并控制餐后血糖水平。第二个,更平移的版本-远端密封且近端连接到经皮注射口的套管-同样证明是紧密的,每天补充两次时,三天调节血糖水平。这项概念验证研究可能有助于开发“智能”插管和下一代胰岛素疗法,从而减轻最终用户的护理负担和成本。本文受版权保护。保留所有权利。
    Automated delivery of insulin based on continuous glucose monitoring is revolutionizing the way insulin-dependent diabetes is treated. However, challenges remain for the widespread adoption of these systems, including the requirement of a separate glucose sensor, sophisticated electronics and algorithms, and the need for significant user input to operate these costly therapies. Herein, a user-centric glucose-responsive cannula is reported for electronics-free insulin delivery. The cannula-made from a tough, elastomer-hydrogel hybrid membrane formed through a one-pot solvent exchange method-changes permeability to release insulin rapidly upon physiologically relevant varying glucose levels, providing simple and automated insulin delivery with no additional hardware or software. Two prototypes of the cannula are evaluated in insulin-deficient diabetic mice. The first cannula-an ends-sealed, subcutaneously inserted prototype-normalizes blood glucose levels for 3 d and controls postprandial glucose levels. The second, more translational version-a cannula with the distal end sealed and the proximal end connected to a transcutaneous injection port-likewise demonstrates tight, 3-d regulation of blood glucose levels when refilled twice daily. This proof-of-concept study may aid in the development of \"smart\" cannulas and next-generation insulin therapies at a reduced burden-of-care toll and cost to end-users.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在两个表面上具有不同性质的Janus水凝胶在材料工程应用领域具有相当大的潜力。已经开发了各种Janus水凝胶,但是仍然存在一些问题,如双层结构引起的应力失配和梯度结构中材料扩散引起的Janus失效。这里,我们报告了一种Janus粘合-坚韧的水凝胶,其一侧具有聚多巴胺修饰的Fe3O4纳米颗粒(Fe3O4@PDA),该磁场通过磁场诱导,以避免在丙烯酰胺与海藻酸钙的交联聚合中无法控制的材料扩散。磁感应Janus(MIJ)水凝胶具有粘合表面和坚硬的体积,没有明显的界面以避免应力失配。由于固有的耗散基质和粘合剂表面上丰富的邻苯二酚基团,它在各种基材上显示出强粘附力。MIJ水凝胶在检测微小的人体运动方面具有高灵敏度(GF=0.842)。由于Fe3O4@PDA增强的界面粘附和传热的协同作用,附着在人体皮肤上时,可以迅速产生有效的温度差。在20K的温差下,MIJ水凝胶的塞贝克系数为13.01mV·K-1,输出功率为462.02mW·m-2。这项工作提出了一种新颖的策略,以构建用于人体运动感测和低等级热量采集的柔性可穿戴设备的Janus水凝胶。
    Janus hydrogels with different properties on the two surfaces have considerable potential in the field of material engineering applications. Various Janus hydrogels have been developed, but there are still some problems, such as stress mismatch caused by the double-layer structure and Janus failure caused by material diffusion in the gradient structure. Here, we report a Janus adhesive-tough hydrogel with polydopamine-decorated Fe3O4 nanoparticles (Fe3O4@PDA) at one side induced by magnetic field to avoid uncontrollable material diffusion in the cross-linking polymerization of acrylamide with alginate-calcium. The magneto-induced Janus (MIJ) hydrogel has an adhesive surface and a tough bulk without an obvious interface to avoid stress mismatch. Due to the intrinsic dissipative matrix and the abundant catechol groups on the adhesive surface, it shows strong adhesion onto various substrates. The MIJ hydrogel has high sensitivity (GF = 0.842) in detecting tiny human motion. Owing to the synergy of Fe3O4@PDA-enhanced interfacial adhesion and heat transfer, it is possible to quickly generate effective temperature differences when adhering to human skin. The MIJ hydrogel achieves a Seebeck coefficient of 13.01 mV·K-1 and an output power of 462.02 mW·m-2 at a 20 K temperature difference. This work proposes a novel strategy to construct Janus hydrogels for flexible wearable devices in human motion sensing and low-grade heat harvesting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    来自天然聚合物的水凝胶是环保的,生物相容性和可调节制造可穿戴传感器。然而,制备具有优异性能的天然聚合物水凝胶传感器(例如,高电导率)。这里,我们开发了一种物理交联的,高导电性和多功能水凝胶(称为PPTP)来应对这一挑战。通过引入单宁酸(TA)合成了基于天然可再生果胶的PPTP水凝胶,氯化钙(CaCl2),和氯化钠(NaCl)成果胶/聚乙烯醇(PVA)双网络结构。水凝胶表现出优异的特性,包括独特的抗拉强度(2.6155MPa),高电导率(7Sm-1),灵敏度高(GF=3.75)。它也是可回收的,进一步增强其环保性质。PPTP水凝胶可用于监测人体关节活动,作为用于监测心电图(ECG)信号的柔性电极,和电子皮肤的可触摸屏幕笔。此外,当与莫尔斯电码和无线蓝牙技术相结合时,PPTP水凝胶可用于水下和陆地信息加密,和解密。我们独特的PPTP水凝胶为医疗监测提供了有希望的机会,信息传递,和人机交互。
    Hydrogels from natural polymers are eco-friendly, biocompatible and adjustable for manufacturing wearable sensors. However, it is still challenging to prepare natural polymer hydrogel sensors with excellent properties (e.g., high conductivity). Here, we developed a physically cross-linked, highly conductive and multifunctional hydrogel (named PPTP) to address this challenge. The natural renewable pectin-based PPTP hydrogel is synthesized by introducing tannic acid (TA), calcium chloride (CaCl2), and sodium chloride (NaCl) into the pectin/polyvinyl alcohol (PVA) dual network structure. The hydrogel exhibits excellent characteristics, including unique tensile strength (2.6155 MPa), high electrical conductivity (7 S m-1), and high sensitivity (GF = 3.75). It is also recyclable, further enhancing its eco-friendly nature. The PPTP hydrogel can be used for monitoring human joint activities, as flexible electrodes for monitoring electrocardiogram (ECG) signals, and touchable screen pen for electronic skin. Moreover, when combined with Morse code and wireless Bluetooth technology, PPTP hydrogels can be used for underwater and land information encryption, and decryption. Our unique PPTP hydrogel offers promising opportunities for medical monitoring, information transfer, and human-computer interaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这里,我们报道了具有优异机械性能的两栖聚合物材料的制造,在水下和空中。通过结合溶剂交换和热退火策略制备了具有多尺度纳米结构的聚乙烯醇/聚(2-甲氧基乙基丙烯酸酯)(PVA/PMEA)复合材料。这有助于通过富含刚性PVA和富含柔性PMEA的相以及PVA链的高密度晶畴进行纳米相分离,分别。受益于多尺度纳米结构,PVA/PMEA水凝胶在苛刻条件下表现出优异的稳定性(如酸性、碱性,和盐水)水溶液,以及卓越的机械性能,断裂强度高达34.8MPa,韧性高达214.2MJm-3。将PVA/PMEA水凝胶脱水得到极其坚固的塑料,其断裂强度为65.4MPa,韧性为430.9MJm-3。本研究为构建适用于复杂承重环境的高性能聚合物材料提供了一条有前途的相结构工程路线。本文受版权保护。保留所有权利。
    Herein, the fabrication of amphibious polymer materials with outstanding mechanical performances, both underwater and in the air is reported. A polyvinyl alcohol/poly(2-methoxyethylacrylate) (PVA/PMEA) composite with multiscale nanostructures is prepared by combining solvent exchange and thermal annealing strategies, which contributes to nanophase separation with rigid PVA-rich and soft PMEA-rich phases and high-density crystalline domains of PVA chains, respectively. Benefiting from the multiscale nanostructure, the PVA/PMEA hydrogel demonstrates excellent stability in harsh (such as acidic, alkaline, and saline) aqueous solutions, as well as superior mechanical behavior with a breaking strength of up to 34.8 MPa and toughness of up to 214.2 MJ m-3 . Dehydrating the PVA/PMEA hydrogel results in an extremely robust plastic with a breaking strength of 65.4 MPa and toughness of 430.9 MJ m-3 . This study provides a promising phase-structure engineering route for constructing high-performance polymer materials for complex load-bearing environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于在保持对湿组织表面的粘附性的同时在材料刚度和韧性之间进行权衡,设计具有用于治疗损伤组织的最佳性质的粘合剂水凝胶是具有挑战性的。在大多数情况下,具有改善的机械强度的生物粘合剂通常缺乏适当的弹性顺应性,阻碍其密封软的应用,弹性,和动态组织。这里,我们提出了一种用于工程组织粘合剂的新策略,其中分子构建块被操纵以允许精确控制和优化各种上述性质,而无需任何权衡。为了引入可调的机械性能和坚固的组织粘附,使用N-羟基琥珀酰亚胺酯(NHS)缀合的藻酸盐(Alg-NHS),水凝胶网络呈现共价和非共价相互作用的不同模式,聚(乙二醇)二丙烯酸酯(PEGDA),单宁酸(TA),和Fe3+离子。通过组合和调节不同的分子相互作用和各种交联机制,我们能够设计出一种极具弹性(924%)和坚韧(4697kJ/m3)的多功能水凝胶,其可以在温和按压的5秒内快速粘附到湿组织表面,并在潮湿条件下随着时间的推移变形以支持生理组织功能。虽然Alg-NHS提供与组织表面的共价键合,TA分子的儿茶酚部分协同地采用贻贝启发的粘附机制以建立对湿组织的牢固粘附。工程生物粘附贴片的强粘附性通过其在兔结膜和猪角膜上的应用得到了证明。同时,工程生物粘合剂表现出无痛的可分离特性和体外生物相容性。此外,由于TA和Fe3+之间的分子相互作用,还强调了支持伤口愈合途径所需的抗氧化和抗菌特性。总的来说,通过调整各种分子相互作用,我们能够开发一个具有"一体化"多功能的单水凝胶平台,可以解决当前在工程基于水凝胶的生物粘合剂用于组织修复和密封的挑战.
    Designing adhesive hydrogels with optimal properties for the treatment of injured tissues is challenging due to the tradeoff between material stiffness and toughness while maintaining adherence to wet tissue surfaces. In most cases, bioadhesives with improved mechanical strength often lack an appropriate elastic compliance, hindering their application for sealing soft, elastic, and dynamic tissues. Here, we present a novel strategy for engineering tissue adhesives in which molecular building blocks are manipulated to allow for precise control and optimization of the various aforementioned properties without any tradeoffs. To introduce tunable mechanical properties and robust tissue adhesion, the hydrogel network presents different modes of covalent and noncovalent interactions using N-hydroxysuccinimide ester (NHS) conjugated alginate (Alg-NHS), poly (ethylene glycol) diacrylate (PEGDA), tannic acid (TA), and Fe3+ ions. Through combining and tuning different molecular interactions and a variety of crosslinking mechanisms, we were able to design an extremely elastic (924%) and tough (4697 kJ/m3) multifunctional hydrogel that could quickly adhere to wet tissue surfaces within 5 s of gentle pressing and deform to support physiological tissue function over time under wet conditions. While Alg-NHS provides covalent bonding with the tissue surfaces, the catechol moieties of TA molecules synergistically adopt a mussel-inspired adhesive mechanism to establish robust adherence to the wet tissue. The strong adhesion of the engineered bioadhesive patch is showcased by its application to rabbit conjunctiva and porcine cornea. Meanwhile, the engineered bioadhesive demonstrated painless detachable characteristics and in vitro biocompatibility. Additionally, due to the molecular interactions between TA and Fe3+, antioxidant and antibacterial properties required to support the wound healing pathways were also highlighted. Overall, by tuning various molecular interactions, we were able to develop a single-hydrogel platform with an \"all-in-one\" multifunctionality that can address current challenges of engineering hydrogel-based bioadhesives for tissue repair and sealing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    坚韧的水凝胶在各个领域引起了相当大的兴趣,然而,由于生物相容性差,非降解,与自然组织明显的成分差异,很难用于组织再生。这里,提出了一种基于明胶的坚韧水凝胶(GBTH)来填补这一空白。受到人类运动的启发,以提高肌肉力量,协同效应被用来产生高功能的结晶域,以抵抗裂纹扩展。GBTH表现出优异的拉伸强度6.67MPa(在未处理的凝胶化后的145倍)。此外,由于其明显的韧性和生物相容性,它直接缝合到成年兔的断裂肌腱上,体内自降解性,与天然组织成分相似。断裂的肌腱可以补偿GBTH的机械传导并刺激肌腱分化以迅速恢复到初始状态,也就是说,在八周内。该策略为制备用于组织再生的高度生物相容性坚韧的水凝胶提供了新的途径。
    Tough hydrogel has attracted considerable interest in various fields, however, due to poor biocompatibility, nondegradation, and pronounced compositional differences from natural tissues, it is difficult to be used for tissue regeneration. Here, a gelatin-based tough hydrogel (GBTH) is proposed to fill this gap. Inspired by human exercise to improve muscle strength, the synergistic effect is utilized to generate highly functional crystalline domains for resisting crack propagation. The GBTH exhibits excellent tensile strength of 6.67 MPa (145-fold that after untreated gelation). Furthermore, it is directly sutured to a ruptured tendon of adult rabbits due to its pronounced toughness and biocompatibility, self-degradability in vivo, and similarity to natural tissue components. Ruptured tendons can compensate for mechanotransduction by GBTH and stimulate tendon differentiation to quickly return to the initial state, that is, within eight weeks. This strategy provides a new avenue for preparation of highly biocompatible tough hydrogel for tissue regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于金属配体动态断裂的能量耗散是增强水凝胶在生物医学和工程领域的特定应用的有效途径。探索具有强大结合强度的新型金属-配体坐标对于容易合成坚韧的凝胶至关重要。这里报道了基于在酰肼配体和锌离子之间形成稳健配位络合物的水凝胶增韧策略。所得水凝胶在室温下表现出高强度和韧性。由于配位键的动态性质,它们的机械性能显示出温度依赖性。此外,凝胶基质中酰肼的胺基为席夫碱反应提供了反应位点,使表面改性不影响凝胶的整体机械性能。酰肼配体易于合成,可以很好地与几种过渡金属配位。这种金属-配体配位应该适合于开发具有通用应用的坚韧的软材料。
    Energy dissipation based on dynamic fracture of metal ligands is an effective way to toughen hydrogels for specific applications in biomedical and engineering fields. Exploration of new kinds of metal-ligand coordinates with robust bonding strength is crucial for the facile synthesis of tough gels. Here a hydrogel toughening strategy based on the formation of robust coordination complexes between the hydrazide ligands and zinc ions is reported. The resultant hydrogels exhibit high strength and toughness at room temperature. Their mechanical properties show temperature dependence due to the dynamic nature of coordination bonds. In addition, the amine group of hydrazides in the gel matrix provides a reactive site for Schiff\'s base reaction, enabling surface modification without influence on overall mechanical performances of the gel. The hydrazide ligands are easy to synthesize and can coordinate very well with several transition metals. Such a metal-ligand coordination should be suitable to develop tough soft materials with versatile applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号