Total nitrogen and phosphorus

  • 文章类型: Journal Article
    The frequent occurrence of microcystins (MCs) in freshwater poses serious threats to the drinking water safety and health of human beings. Although MCs have been detected in individual fresh waters in China, little is known about their occurrence over a large geographic scale. An investigation of 30 subtropical lakes in eastern China was performed during summer 2018 to determine the MCs concentrations in water and their possible risk via direct water consumption to humans, and to assess the associated environmental factors. MCs were detected in 28 of 30 lakes, and the highest mean MCs concentrations occurred in Lake Chaohu (26.7 μg/L), followed by Lake Taihu (3.11 μg/L). MC-LR was the primary variant observed in our study, and MCs were mainly produced by Microcystis, Anabaena (Dolicospermum), and Oscillatoria in these lakes. Replete nitrogen and phosphorus concentrations, irradiance, and stable water column conditions were critical for dominance of MC-producing cyanobacteria and high MCs production in our study. Hazard quotients indicated that human health risk of MCs in most lakes was at moderate or low levels except Lakes Chaohu and Taihu. Nutrient control management is recommended to decrease the likelihood of high MCs production. Finally, we recommend the regional scale thresholds of total nitrogen and total phosphorus concentrations of 1.19 mg/L and 7.14 × 10-2 mg/L, respectively, based on the drinking water guideline of MC-LR (1 μg/L) recommended by World Health Organization. These targets for nutrient control will aid water quality managers to reduce human health risks created by exposure to MCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号