Three-dimensional bioprinting technology

  • 文章类型: Journal Article
    UNASSIGNED: To review the research progress on the application of three-dimensional (3D) bioprinting technology in auricle repair and reconstruction.
    UNASSIGNED: The recent domestic and international research literature on 3D printing and auricle repair and reconstruction was extensively reviewed, and the concept of 3D bioprinting technology and research progress in auricle repair and reconstruction were summarized.
    UNASSIGNED: The auricle possesses intricate anatomical structure and functionality, necessitating precise tissue reconstruction and morphological replication. Hence, 3D printing technology holds immense potential in auricle reconstruction. In contrast to conventional 3D printing technology, 3D bioprinting technology not only enables the simulation of auricular outer shape but also facilitates the precise distribution of cells within the scaffold during fabrication by incorporating cells into bioink. This approach mimics the composition and structure of natural tissues, thereby favoring the construction of biologically active auricular tissues and enhancing tissue repair outcomes.
    UNASSIGNED: 3D bioprinting technology enables the reconstruction of auricular tissues, avoiding potential complications associated with traditional autologous cartilage grafting. The primary challenge in current research lies in identifying bioinks that meet both the mechanical requirements of complex tissues and biological criteria.
    UNASSIGNED: 对3D生物打印技术在耳廓修复重建方面的应用研究进展作一综述。.
    UNASSIGNED: 广泛查阅近年来国内外3D打印与耳廓修复重建相关研究文献,对3D生物打印技术概念及其在耳廓修复重建中的应用研究进展进行总结。.
    UNASSIGNED: 耳廓具有复杂解剖结构和功能,需要精确的组织重建和形态复制,因此 3D打印技术在耳廓修复重建方面具有巨大应用潜力。与传统3D打印技术相比,3D生物打印技术不仅能模拟耳廓外形结构,还能将细胞与材料混合打印,在支架成型过程中实现细胞在支架内部精准分布,模拟天然组织组成及结构,更有利于构建具有生物活性功能的耳廓组织,从而提高修复效果。.
    UNASSIGNED: 3D生物打印技术可以重建耳廓组织,能避免传统自体软骨移植相关并发症,寻找既符合耳廓组织机械性要求,又符合生物要求的生物墨水是目前研究的主要挑战。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    For the damage and loss of tissues and organs caused by urinary system diseases, the current clinical treatment methods have limitations. Tissue engineering provides a therapeutic method that can replace or regenerate damaged tissues and organs through the research of cells, biological scaffolds and biologically related molecules. As an emerging manufacturing technology, three-dimensional (3D) bioprinting technology can accurately control the biological materials carrying cells, which further promotes the development of tissue engineering. This article reviews the research progress and application of 3D bioprinting technology in tissue engineering of kidney, ureter, bladder, and urethra. Finally, the main current challenges and future prospects are discussed.
    针对泌尿系疾病导致的组织器官损伤和缺失,目前临床上的治疗方法存在局限性。组织工程通过对细胞、生物支架和生物相关分子的研究,提供了一种可替代或再生受损组织器官的治疗手段。三维(3D)生物打印技术作为新兴制造技术,能对载有细胞的生物材料精确控制,进一步推动着组织工程领域的发展。本文综述了3D生物打印技术在肾脏、输尿管、膀胱、尿道组织工程中的研究进展和应用,并讨论了目前面临的主要挑战和未来展望。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号