Tf2

Tf2
  • 文章类型: Journal Article
    内分泌干扰物(EDCs)是模拟的天然和人造化学物质,阻断或干扰人体荷尔蒙系统。在目前的手稿中,对干扰生物合成的雄激素干扰物进行QSAR建模,对男性生殖系统产生不利影响的雄激素的代谢或作用。在大鼠中对雄激素受体(LogRBA)表现出亲和力的一组96个EDC用于通过蒙特卡罗优化使用混合描述符(HFG和SMILES的组合)进行QSAR研究。使用理想相关性指数(TF2),形成了5个分裂,并通过各种验证参数评估了由这些分裂产生的5个模型的可预测性.第一次拆分得到的模型是最高的模型,R2验证=0.7878。通过采用结构属性的相关权重研究了负责终点变化的结构属性。为了进一步验证模型,使用这些属性设计了新的EDC。进行了计算机分子建模研究以评估与受体的详细相互作用。观察到所有设计的化合物的结合能均优于铅,并且在-10.46至-14.80的范围内。对ED01和NED05进行了100ns的分子动力学模拟。结果表明,携带NED05的蛋白质-配体复合物比铅ED01更稳定,表现出与受体更好的相互作用。Further,试图评估它们的新陈代谢,ADME研究使用SwissADME进行评估。开发的模型能够以真实的方式预测设计化合物的特征。由RamaswamyH.Sarma沟通。
    Endocrine disrupter chemicals (EDCs) are both natural and man-made chemicals that mimic, block or interfere with human hormonal system. In the present manuscript, QSAR modeling was performed for the androgen disruptors that interfere with biosynthesis, metabolism or action of androgens that causes adverse effects on male reproductive system. A set of 96 EDCs that exhibited affinity towards androgen receptors (Log RBA) in rats were employed for carrying out QSAR studies using Hybrid descriptors (combination of HFG and SMILES) through Monte Carlo Optimization. Using index of ideality of correlation (TF2), five splits were formed and predictability of five models resulting from these splits was assessed by various validation parameters. Models resulted from first split was the top most one with R2validation = 0.7878. Structural attributes responsible for change in endpoint were studied by employing correlation weights of structural attributes. In order to further validate the model, new EDCs were designed using these attributes. In silico molecular modelling studies were performed to assess the detailed interactions with the receptor. The binding energies of all the designed compounds were observed to be better than lead and are in the range of -10.46 to -14.80. Molecular dynamics simulation of 100 ns was performed for ED01 and NED05. The results revealed that the protein-ligand complex bearing NED05 was more stable than lead ED01 exhibiting better interactions with the receptor. Further, in an attempt to assess their metabolism, ADME studies were evaluated using SwissADME. The developed model enables to predict the characteristics of designed compounds in an authentic way.Communicated by Ramaswamy H. Sarma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    NaV1.3 is a subtype of the voltage-gated sodium channel family. It has been implicated in the pathogenesis of neuropathic pain, although the contribution of this channel to neuronal excitability is not well understood. Tf2, a β-scorpion toxin previously identified from the venom of Tityus fasciolatus, has been reported to selectively activate NaV1.3. Here, we describe the activity of synthetic Tf2 and assess its suitability as a pharmacological probe for NaV1.3. As described for the native toxin, synthetic Tf2 (1 µM) caused early channel opening, decreased the peak current, and shifted the voltage dependence of NaV1.3 activation in the hyperpolarizing direction by -11.3 mV, with no activity at NaV1.1, NaV1.2, and NaV1.4-NaV1.8. Additional activity was found at NaV1.9, tested using the hNav1.9_C4 chimera, where Tf2 (1 µM) shifted the voltage dependence of activation by -6.3 mV. In an attempt to convert Tf2 into an NaV1.3 inhibitor, we synthetized the analogue Tf2[S14R], a mutation previously described to remove the excitatory activity of related β-scorpion toxins. Indeed, Tf2[S14R](10 µM) had reduced excitatory activity at NaV1.3, although it still caused a small -5.8 mV shift in the voltage dependence of activation. Intraplantar injection of Tf2 (1 µM) in mice caused spontaneous flinching and swelling, which was not reduced by the NaV1.1/1.3 inhibitor ICA-121431 nor in NaV1.9-/- mice, suggesting off-target activity. In addition, despite a loss of excitatory activity, intraplantar injection of Tf2[S14R](10 µM) still caused swelling, providing strong evidence that Tf2 has additional off-target activity at one or more non-neuronal targets. Therefore, due to activity at NaV1.9 and other yet to be identified target(s), the use of Tf2 as a selective pharmacological probe may be limited.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Retrotransposons are mobile genetic elements that colonize eukaryotic genomes by replicating through an RNA intermediate. As retrotransposons can move within the host genome, defense mechanisms have evolved to repress their potential mutagenic activities. In the fission yeast Schizosaccharomyces pombe, the mRNA of Tf2 long terminal repeat retrotransposons is targeted for degradation by the 3\'-5\' exonucleolytic activity of the exosome-associated protein Rrp6. Here, we show that the nuclear poly(A)-binding protein Pab2 functions with Rrp6 to negatively control Tf2 mRNA accumulation. Furthermore, we found that Pab2/Rrp6-dependent RNA elimination functions redundantly to the transcriptional silencing mediated by the CENP-B homolog, Abp1, in the suppression of antisense Tf2 RNA accumulation. Interestingly, the absence of Pab2 attenuated the derepression of Tf2 transcription and the increased frequency of Tf2 mobilization caused by the deletion of abp1 Our data also reveal that the expression of antisense Tf2 transcripts is developmentally regulated and correlates with decreased levels of Tf2 mRNA. Our findings suggest that transcriptional and post-transcriptional pathways cooperate to control sense and antisense RNAs expressed from Tf2 retroelements.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    It is well established that eukaryotic genomes are pervasively transcribed producing cryptic unstable transcripts (CUTs). However, the mechanisms regulating pervasive transcription are not well understood. Here, we report that the fission yeast CENP-B homolog Abp1 plays an important role in preventing pervasive transcription. We show that loss of abp1 results in the accumulation of CUTs, which are targeted for degradation by the exosome pathway. These CUTs originate from different types of genomic features, but the highest increase corresponds to Tf2 retrotransposons and rDNA repeats, where they map along the entire elements. In the absence of abp1, increased RNAPII-Ser5P occupancy is observed throughout the Tf2 coding region and, unexpectedly, RNAPII-Ser5P is enriched at rDNA repeats. Loss of abp1 also results in Tf2 derepression and increased nucleolus size. Altogether these results suggest that Abp1 prevents pervasive RNAPII transcription of repetitive DNA elements (i.e., Tf2 and rDNA repeats) from internal cryptic sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号