Temporoammonic pathway

  • 文章类型: Journal Article
    背景:突触的局部翻译对于快速重塑突触蛋白质组以维持长期可塑性和记忆很重要。虽然记忆相关的局部翻译的调节机制已在突触后/树突区域得到广泛阐明,没有直接证据表明轴突中的RNA结合蛋白(RBP)控制靶特异性mRNA的翻译,从而促进长时程增强(LTP)和记忆.我们先前报道,由胞质聚腺苷酸化元件结合蛋白2(CPEB2)控制的翻译对于突触后可塑性和记忆很重要。这里,我们调查了CPEB2是否调节轴突平移以支持突触前可塑性。
    方法:在具有CPEB2的泛神经元/神经胶质细胞或谷氨酸能神经元特异性敲除的小鼠中进行行为和电生理学评估。电记录海马Schaffer侧支(SC)-CA1和颞氨(TA)-CA1途径,以监测4列高频刺激引起的突触传递和LTP。RNA免疫沉淀,结合生物信息学分析,用于揭示与学习相关的CPEB2结合轴突RNA候选物,通过Western印迹和荧光素酶报告基因检测进一步验证。将表达Cre重组酶的腺相关病毒立体定向递送至TA回路的突触前或突触后区域以消融Cpeb2用于进一步的电生理研究。在微流体平台上培养的生化分离的突触小体和轴突化神经元用于测量轴突蛋白合成和FM4-64FX负载的突触小泡。
    结果:海马CA1神经元的电生理分析检测到CPEB2耗尽的SC和TA传入的异常兴奋性和囊泡释放概率,因此,我们将CPEB2免疫沉淀的转录组与成人皮质中学习诱导的轴突翻译组交叉比较,以鉴定可能受CPEB2调节的轴突靶标.我们验证了Slc17a6,编码囊泡谷氨酸转运蛋白2(VGLUT2),由CPEB2翻译上调。在表达VGLUT2的谷氨酸能神经元中CPEB2的条件性敲除会损害小鼠海马依赖性记忆的巩固。在VGLUT2主导的TA传入中,突触前特异性的Cpeb2消融足以减弱蛋白质合成依赖性LTP。此外,CPEB2缺乏症或环己酰亚胺阻断活性诱导的轴突Slc17a6翻译减少了含VGLUT2的突触小泡的可释放池。
    结论:我们确定了272个CPEB2结合转录本,其轴突翻译在学习后发生改变,并在CPEB2驱动的轴突合成VGLUT2和突触前翻译依赖性LTP之间建立了因果关系。这些发现扩展了我们对突触前室中与记忆相关的翻译控制机制的理解。
    BACKGROUND: Local translation at synapses is important for rapidly remodeling the synaptic proteome to sustain long-term plasticity and memory. While the regulatory mechanisms underlying memory-associated local translation have been widely elucidated in the postsynaptic/dendritic region, there is no direct evidence for which RNA-binding protein (RBP) in axons controls target-specific mRNA translation to promote long-term potentiation (LTP) and memory. We previously reported that translation controlled by cytoplasmic polyadenylation element binding protein 2 (CPEB2) is important for postsynaptic plasticity and memory. Here, we investigated whether CPEB2 regulates axonal translation to support presynaptic plasticity.
    METHODS: Behavioral and electrophysiological assessments were conducted in mice with pan neuron/glia- or glutamatergic neuron-specific knockout of CPEB2. Hippocampal Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 pathways were electro-recorded to monitor synaptic transmission and LTP evoked by 4 trains of high-frequency stimulation. RNA immunoprecipitation, coupled with bioinformatics analysis, were used to unveil CPEB2-binding axonal RNA candidates associated with learning, which were further validated by Western blotting and luciferase reporter assays. Adeno-associated viruses expressing Cre recombinase were stereotaxically delivered to the pre- or post-synaptic region of the TA circuit to ablate Cpeb2 for further electrophysiological investigation. Biochemically isolated synaptosomes and axotomized neurons cultured on a microfluidic platform were applied to measure axonal protein synthesis and FM4-64FX-loaded synaptic vesicles.
    RESULTS: Electrophysiological analysis of hippocampal CA1 neurons detected abnormal excitability and vesicle release probability in CPEB2-depleted SC and TA afferents, so we cross-compared the CPEB2-immunoprecipitated transcriptome with a learning-induced axonal translatome in the adult cortex to identify axonal targets possibly regulated by CPEB2. We validated that Slc17a6, encoding vesicular glutamate transporter 2 (VGLUT2), is translationally upregulated by CPEB2. Conditional knockout of CPEB2 in VGLUT2-expressing glutamatergic neurons impaired consolidation of hippocampus-dependent memory in mice. Presynaptic-specific ablation of Cpeb2 in VGLUT2-dominated TA afferents was sufficient to attenuate protein synthesis-dependent LTP. Moreover, blocking activity-induced axonal Slc17a6 translation by CPEB2 deficiency or cycloheximide diminished the releasable pool of VGLUT2-containing synaptic vesicles.
    CONCLUSIONS: We identified 272 CPEB2-binding transcripts with altered axonal translation post-learning and established a causal link between CPEB2-driven axonal synthesis of VGLUT2 and presynaptic translation-dependent LTP. These findings extend our understanding of memory-related translational control mechanisms in the presynaptic compartment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    淀粉样蛋白-β(Aβ)和过度磷酸化的tau(P-tau)是阿尔茨海默病(AD)生物标志物,其以复杂的方式相互作用以诱导在该疾病中观察到的大多数认知和脑改变。由于神经元细胞骨架是tau和Aβ共同的下游病理靶标,这主要导致微管不稳定性增强,微管稳定剂(MSA)的给药可以防止其病理作用。然而,由于MSA的状态依赖性负面影响,其有效性仍然不确定;因此,需要评估它们在不同病理或生理条件下的具体作用。我们评估了埃坡霉素-D(Epo-D)临床使用的MSA,从脑室内注射Aβ产生的功能和行为改变中拯救出来,P-tau的存在,或它们在rTg4510小鼠中的组合。我们还探讨了Epo-D的副作用。要做到这一点,我们用Hebb-Williams迷宫评估了海马依赖性空间记忆,海马CA1完整性和CA1锥体神经元的内在和突触特性与膜片钳技术。Aβ和P-tau轻度受损的记忆恢复,但对内在兴奋性产生了相反的影响。当Aβ和P-tau结合时,兴奋性和空间反转学习的变化(即,认知灵活性)加剧。有趣的是,Epo-D单独和联合预防了大多数诱导的Aβ和P-tau损伤。然而,Epo-D还表现出一些副作用,这取决于主要的病理或生理状况,这应该在未来的临床前和转化研究中考虑。虽然我们没有进行广泛的组织病理学评估或测量微管稳定性,我们的研究结果表明,MSA可以挽救AD样疾病的后果,但如果在疾病的前驱阶段给药,则是有害的.
    Amyloid-β (Aβ) and hyperphosphorylated tau (P-tau) are Alzheimer\'s disease (AD) biomarkers that interact in a complex manner to induce most of the cognitive and brain alterations observed in this disease. Since the neuronal cytoskeleton is a common downstream pathological target of tau and Aβ, which mostly lead to augmented microtubule instability, the administration of microtubule stabilizing agents (MSAs) can protect against their pathological actions. However, the effectiveness of MSAs is still uncertain due to their state-dependent negative effects; thus, evaluating their specific actions in different pathological or physiological conditions is required. We evaluated whether epothilone-D (Epo-D), a clinically used MSA, rescues from the functional and behavioral alterations produced by intracerebroventricular injection of Aβ, the presence of P-tau, or their combination in rTg4510 mice. We also explored the side effects of Epo-D. To do so, we evaluated hippocampal-dependent spatial memory with the Hebb-Williams maze, hippocampal CA1 integrity and the intrinsic and synaptic properties of CA1 pyramidal neurons with the patch-clamp technique. Aβ and P-tau mildly impaired memory retrieval, but produced contrasting effects on intrinsic excitability. When Aβ and P-tau were combined, the alterations in excitability and spatial reversal learning (i.e., cognitive flexibility) were exacerbated. Interestingly, Epo-D prevented most of the impairments induced Aβ and P-tau alone and combined. However, Epo-D also exhibited some side effects depending on the prevailing pathological or physiological condition, which should be considered in future preclinical and translational studies. Although we did not perform extensive histopathological evaluations or measured microtubule stability, our findings show that MSAs can rescue the consequences of AD-like conditions but otherwise be harmful if administered at a prodromal stage of the disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    长期抑郁(LTD)的机制,学习的细胞基质,记忆,和行为灵活性,在Schaffer侧支(SC)突触中进行了广泛的研究,抑制自噬被确定为关键因素。SC输入终止于基底和近端根尖树突,而远端根尖树突接受来自颞氨途径(TAP)的输入。这里,我们证明TAP和SC突触具有依赖于NMDA受体的共同LTD机制,caspase-3和自噬抑制。尽管有这种共享的LTD机制,近端顶端树突比远端顶端树突含有更多的自噬体。此外,与SCLTD不同,随着年龄的增长,TAPLTD坚持到成年。我们先前的研究表明,成年期的高自噬不允许SCLTD诱导。自噬体从近端到远端树突的减少,结合SC和TAP突触的不同LTD诱导性,提出了一个模型,其中树突中自噬体的差异分布限制了特定电路的LTD诱导性。
    The mechanism of long-term depression (LTD), a cellular substrate for learning, memory, and behavioral flexibility, is extensively studied in Schaffer collateral (SC) synapses, with inhibition of autophagy identified as a key factor. SC inputs terminate at basal and proximal apical dendrites, whereas distal apical dendrites receive inputs from the temporoammonic pathway (TAP). Here, we demonstrate that TAP and SC synapses have a shared LTD mechanism reliant on NMDA receptors, caspase-3, and autophagy inhibition. Despite this shared LTD mechanism, proximal apical dendrites contain more autophagosomes than distal apical dendrites. Additionally, unlike SC LTD, which diminishes with age, TAP LTD persists into adulthood. Our previous study shows that the high autophagy in adulthood disallows SC LTD induction. The reduction of autophagosomes from proximal to distal dendrites, combined with distinct LTD inducibility at SC and TAP synapses, suggests a model where the differential distribution of autophagosomes in dendrites gates LTD inducibility at specific circuits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从腹侧被盖区或蓝斑向海马的多巴胺能投射被认为在获取新信息中起着至关重要的作用。因此,海马突触可塑性的多巴胺能调节已被广泛研究。我们检查了D1和D2受体如何影响mGluR5介导的颞氨CA1突触的突触可塑性,并显示了颞氨CA1突触的多巴胺能调节以各种方式表达。我们的发现表明,海马CA1区的多巴胺能系统调节长期突触可塑性和新信息的处理。
    Dopaminergic projection to the hippocampus from the ventral tegmental area or locus ceruleus has been considered to play an essential role in the acquisition of novel information. Hence, the dopaminergic modulation of synaptic plasticity in the hippocampus has been widely studied. We examined how the D1 and D2 receptors influenced the mGluR5-mediated synaptic plasticity of the temporoammonic-CA1 synapses and showed that the dopaminergic modulation of the temporoammonic-CA1 synapses was expressed in various ways. Our findings suggest that the dopaminergic system in the hippocampal CA1 region regulates the long-term synaptic plasticity and processing of the novel information.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    颞叶癫痫(TLE)的内侧内嗅区(MEA)对海马的夹带,成人中最常见的耐药癫痫类型,被认为主要是通过穿孔途径(PP)介导的,连接MEA(L)II层的星状细胞与齿状回(DG)的颗粒细胞以驱动海马三突触回路。使用免疫组织化学,高分辨率共聚焦显微镜和大鼠毛果芸香碱TLE模型,我们在这里表明,鲜为人知的时间氨途径(TAP)在将MEA病理转移到海马CA1区中起着重要作用,而与PP无关。观察到的病理是区域特异性的,主要限于海马的CA1c亚区。如前面所示,每日颅内输注d-丝氨酸(100μm),含有GluN3的三异聚N-甲基d-天冬氨酸受体(t-NMDARs)的拮抗剂,进入MEA可以防止LIII神经元的丢失和癫痫发生。这种对MEA的干预导致了海马CA1神经元的拯救,否则这些神经元将在癫痫动物中死亡,并下调星形胶质细胞和小胶质细胞的表达,从而减轻神经炎症的影响。有趣的是,在其他脆弱地区,如hilus,没有观察到类似程度的变化,DG或CA3,表明CA1中的病理表现主要是通过TAP驱动的。这项工作强调了TAP在海马区夹带中的作用,并确定了治疗TLE的特定区域。
    Entrainment of the hippocampus by the medial entorhinal area (MEA) in Temporal Lobe Epilepsy (TLE), the most common type of drug-resistant epilepsy in adults, is believed to be mediated primarily through the perforant pathway (PP), which connects stellate cells in layer (L) II of the MEA with granule cells of the dentate gyrus (DG) to drive the hippocampal tri-synaptic circuit. Using immunohistochemistry, high-resolution confocal microscopy and the rat pilocarpine model of TLE, we show here that the lesser known temporoammonic pathway (TAP) plays a significant role in transferring MEA pathology to the CA1 region of the hippocampus independently of the PP. The pathology observed was region-specific and restricted primarily to the CA1c subfield of the hippocampus. As shown previously, daily intracranial infusion of d-serine (100 μm), an antagonist of GluN3-containing triheteromeric N-Methyl d-aspartate receptors (t-NMDARs), into the MEA prevented loss of LIII neurons and epileptogenesis. This intervention in the MEA led to the rescue of hippocampal CA1 neurons that would have otherwise perished in the epileptic animals, and down regulation of the expression of astrocytes and microglia thereby mitigating the effects of neuroinflammation. Interestingly, these changes were not observed to a similar extent in other regions of vulnerability like the hilus, DG or CA3, suggesting that the pathology manifest in CA1 is driven predominantly through the TAP. This work highlights TAP\'s role in the entrainment of the hippocampus and identifies specific areas for therapeutic intervention in dealing with TLE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The present study investigated the short-term and long-term synaptic plasticity of excitatory synapses formed by the nucleus reuniens (RE) and entorhinal cortex (EC) on the distal apical dendrites of CA1 pyramidal cells. RE-CA1 synapses are implicated in memory involving the hippocampus and medial prefrontal cortex. Current source density (CSD) analysis was used to identify excitatory and inhibitory currents following stimulation of RE or medial perforant path (MPP) in urethane-anesthetized mice in vivo. At the distal apical dendrites, RE evoked an initial excitatory sink followed by inhibitory sources at short (~ 30 ms) and long (150-200 ms) latencies, and often showing gamma (25-40 Hz) oscillations. Both RE-evoked and spontaneous gamma-frequency local field potentials displayed the same CSD depth profile. Paired-pulse facilitation (PPF) of the distal excitatory sink at 20-200 ms interpulse intervals was observed following RE stimulation, generally higher than that following MPP stimulation. Theta-frequency burst stimulation (TBS) of RE induced input-specific long-term potentiation (LTP) at the distal dendritic CA1 synapses, accompanied by reduction of PPF. After TBS of the MPP, the MPP-CA1 distal dendritic synapse could manifest LTP or long-term depression, but the non-tetanized RE-CA1 synapse was typically potentiated. Heterosynaptic potentiation of the RE to CA1 distal synapses may occur after repeated activity of EC afferents, or spread of MPP stimulus currents to coursing RE afferents. The results indicate a propensity of RE-CA1 distal excitatory synapses to show PPF, LTP and gamma oscillations, all of which may participate in memory processing by RE and EC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Contextual learning requires the delivery of AMPA receptors to CA1 synapses in the dorsal hippocampus. However, proximodistal heterogeneity of pathway-specific plasticity remains unclear. Here, we examined the proximodistal heterogeneity in learning-induced plasticity at the CA1 synapses with inputs from the entorhinal cortex layer III (ECIII) or from CA3. We subjected male rats to an inhibitory avoidance task and prepared acute hippocampal slices for whole-cell patch clamp experiments, where we stimulated ECIII-CA1 or CA3-CA1 input fibers to analyze evoked excitatory postsynaptic currents (EPSCs). Compared to untrained controls, trained rats exhibited higher AMPA/NMDA current ratios at CA3-CA1 synapses of proximal and intermediate, but not distal CA1 neurons, which suggested that region-specific plasticity occurred after learning. Moreover, trained rats exhibited higher AMPA/NMDA current ratios at ECIII-CA1 synapses of intermediate and distal, but not proximal CA1 neurons. These findings suggested the presence of proximodistal heterogeneity in pathway-specific postsynaptic plasticity. Regarding presynaptic plasticity, training slightly, but significantly increased the paired-pulse ratios of CA3-CA1 synapses of proximal and intermediate, but not distal CA1 neurons. Moreover, trained rats exhibited higher paired-pulse ratios at ECIII-CA1 synapses of intermediate and distal, but not proximal CA1 neurons, which suggested region-specific presynaptic plasticity. Finally, learning was clearly prevented by the bilateral microinjection of a plasticity blocker in the proximal or intermediate, but not distal CA1 subfields, which suggested functional heterogeneity along the proximodistal axis. Understanding region- and pathway-specific plasticity at dorsal CA1 synapses could aid in controlling encoded memory.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Fetal nicotine exposure from smoking during pregnancy causes long-lasting cognitive impairments in offspring, yet little is known about the mechanisms that underlie this effect. Here we demonstrate that early postnatal exposure of mouse pups to nicotine via maternal milk impairs long-term, but not short-term, hippocampus-dependent memory during adolescence. At the Schaffer collateral (SC) pathway, the most widely studied synapses for a cellular correlate of hippocampus-dependent memory, the induction of N-methyl-D-aspartate receptor-dependent transient long-term potentiation (LTP) and protein synthesis-dependent long-lasting LTP are not diminished by nicotine exposure, but rather unexpectedly the threshold for LTP induction becomes lower after nicotine treatment. Using voltage sensitive dye to visualize hippocampal activity, we found that early postnatal nicotine exposure also results in enhanced CA1 depolarization and hyperpolarization after SC stimulation. Furthermore, we show that postnatal nicotine exposure induces pervasive changes to the nicotinic modulation of CA1 activity: activation of nicotinic receptors no longer increases CA1 network depolarization, acute nicotine inhibits rather than facilitates the induction of LTP at the SC pathway by recruiting an additional nicotinic receptor subtype, and acute nicotine no longer blocks LTP induction at the temporoammonic pathway. These findings reflect the pervasive impact of nicotine exposure during hippocampal development, and demonstrate an association of hippocampal memory impairments with altered nicotinic cholinergic modulation of LTP, but not impaired LTP. The implication of our results is that nicotinic cholinergic-dependent plasticity is required for long-term memory formation and that postnatal nicotine exposure disrupts this form of plasticity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Hippocampal sharp wave-ripple complexes (SWRs) involve the synchronous discharge of thousands of cells throughout the CA3-CA1-subiculum-entorhinal cortex axis. Their strong transient output affects cortical targets, rendering SWRs a possible means for memory transfer from the hippocampus to the neocortex for long-term storage. Neurophysiological observations of hippocampal activity modulation by the cortical slow oscillation (SO) during deep sleep and anesthesia, and correlations between ripples and UP states, support the role of SWRs in memory consolidation through a cortico-hippocampal feedback loop. We couple a cortical network exhibiting SO with a hippocampal CA3-CA1 computational network model exhibiting SWRs, in order to model such cortico-hippocampal correlations and uncover important parameters and coupling mechanisms controlling them. The cortical oscillatory output entrains the CA3 network via connections representing the mossy fiber input, and the CA1 network via the temporoammonic pathway (TA). The spiking activity in CA3 and CA1 is shown to depend on the excitation-to-inhibition ratio, induced by combining the two hippocampal inputs, with mossy fiber input controlling the UP-state correlation of CA3 population bursts and corresponding SWRs, whereas the temporoammonic input affects the overall CA1 spiking activity. Ripple characteristics and pyramidal spiking participation to SWRs are shaped by the strength of the Schaffer collateral drive. A set of in vivo recordings from the rat hippocampus confirms a model-predicted segregation of pyramidal cells into subgroups according to the SO state where they preferentially fire and their response to SWRs. These groups can potentially play distinct functional roles in the replay of spike sequences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The neurotransmitter dopamine (DA) plays an important role in learning by enhancing the saliency of behaviorally relevant stimuli. How this stimulus selection is achieved on the cellular level, however, is not known. Here, in recordings from hippocampal slices, we show that DA acts specifically at the direct cortical input to hippocampal area CA1 (the temporoammonic (TA) pathway) to filter the excitatory drive onto pyramidal neurons based on the input frequency. During low-frequency patterns of stimulation, DA depressed excitatory TA inputs to both CA1 pyramidal neurons and local inhibitory GABAergic interneurons via presynaptic inhibition. In contrast, during high-frequency patterns of stimulation, DA potently facilitated the TA excitatory drive onto CA1 pyramidal neurons, owing to diminished feedforward inhibition. Analysis of DA\'s effects over a broad range of stimulus frequencies indicates that it acts as a high-pass filter, augmenting the response to high-frequency inputs while diminishing the impact of low-frequency inputs. These modulatory effects of DA exert a profound influence on activity-dependent forms of synaptic plasticity at both TA-CA1 and Schaffer-collateral (SC)-CA1 synapses. Taken together, our data demonstrate that DA acts as a gate on the direct cortical input to the hippocampus, modulating information flow and synaptic plasticity in a frequency-dependent manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号