TOCP

TOCP
  • 文章类型: Journal Article
    气毒性综合征与暴露于磷酸三甲苯酯(TCP)有关,用作液压油和发动机润滑油中的添加剂。有毒代谢物2-(2-甲苯基)-4H-1,3,2-苯并二氧杂磷-2-氧化物(CBDP)由TCP异构体三-邻甲苯基磷酸酯(TOCP)在体内形成,并且已知与活性位点丝氨酸反应乙酰胆碱酯酶(AChE)和丁酰胆碱酯酶(BChE),从而抑制酶。先前的体外研究表明,有机磷化合物(OP)对胆碱酯酶的抑制动力学存在明显的物种差异,在开发相关动物模型以研究OP中毒和气毒性综合征时必须考虑这一点。本研究旨在研究人类的抑制动力学,食蟹猴,猪,迷你猪,豚鼠,鼠标,在标准化条件下通过CBDP和大鼠AChE以及BChE。人的抑制(ki)有相似的速率常数,食蟹猴和小鼠AChE通过CBDP。相比之下,获得的豚鼠的ki值,迷你猪,猪,大鼠AChE比人AChE低2.8至5.9倍。本研究的结果证实CBDP是人类BChE最有效的抑制剂之一。表明ki值为3.24±0.33×108M-1min-1,比人AChE大约1,140倍。因此,豚鼠对BChE的抑制率明显更明显,迷你猪,猪,rat,食蟹猴,与来自各自来源的AChE相比,通过CBDP发现了小鼠,表示ki值大2.0到89.6倍。
    The aerotoxic syndrome has been associated with exposure to tricresyl phosphate (TCP), which is used as additive in hydraulic fluids and engine lubricants. The toxic metabolite 2-(2-cresyl)-4H-1,3,2-benzodioxaphosphorin-2-oxide (CBDP) is formed from the TCP isomer tri-ortho-cresyl phosphate (TOCP) in vivo and is known to react with the active site serine in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) resulting in the inhibition of the enzymes. Previous in vitro studies showed pronounced species differences in the inhibition kinetics of cholinesterases by organophosphorus compounds (OP), which must be considered in the development of relevant animal models for the investigation of OP poisoning and the aerotoxic syndrome. The present study was designed to investigate the inhibition kinetics of human, Cynomolgus monkey, pig, mini pig, guinea pig, mouse, and rat AChE as well as BChE by CBDP under standardized conditions. There were similar rate constants for the inhibition (ki) of human, Cynomolgus monkey and mouse AChE by CBDP. In contrast, the ki values obtained for guinea pig, mini pig, pig, and rat AChE were 2.8- to 5.9-fold lower than that of human AChE. The results of the present study confirmed CBDP as one of the most potent inhibitors of human BChE, indicating a ki value of 3.24 ± 0.33 ×108M-1min-1, which was about 1,140-fold higher than that of human AChE. Accordingly, a markedly more pronounced inhibition rate of BChE from the species guinea pig, mini pig, pig, rat, Cynomolgus monkey, and mouse by CBDP was found as compared to those of AChE from the respective sources, indicating 2.0- to 89.6-fold higher ki values.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    环境暴露于磷酸三甲苯酯(TCP)可能导致严重的神经毒性作用,包括有机磷(OP)引起的迟发性神经病变。TCP有三个对称异构体,由芳环系统上的甲基位置来区分。这些异构体之一,磷酸三邻甲苯酯(ToCP),多年来一直被报道为神经性OP,靶向神经靶酯酶(NTE/PNPLA6),但其毒性作用模式尚未完全阐明。斑马鱼eleuthero胚胎和幼虫用于表征TCP异构体的差异作用。对称异构体在体内以不同的IC50抑制戊酸苯酯(PV)-NTE酶活性,而对乙酰胆碱酯酶活性没有影响。此外,运动行为也受到磷酸三对甲苯酯和磷酸三间甲苯酯的影响,只有ToCP暴露会导致持续几个小时的运动过度活动,与姿势控制系统中的缺陷和受损的光反应相关,视觉运动反应测试表明。电场脉冲马达响应测试表明,癫痫发作状,仅ToCP可显著诱导多种C弯曲意大利面表型,与PV-NTE活性的任何抑制无关。暴露于微毒素的Eleuthero胚胎,一种已知的γ-氨基丁酸A型受体抑制剂,表现出与ToCP暴露相似的不良结果。因此,我们的结果表明,毒性作用的TCP模式是异构体特异性的,最初与PV-NTE活性的调节无关。此外,研究表明,所涉及的分子事件与神经元回路中兴奋和抑制之间的平衡受损有关。
    Environmental exposure to tricresyl phosphate (TCP) may lead to severe neurotoxic effects, including organophosphate (OP)-induced delayed neuropathy. TCP has three symmetric isomers, distinguished by the methyl group position on the aromatic ring system. One of these isomers, tri-ortho-cresyl phosphate (ToCP), has been reported for years as a neuropathic OP, targeting neuropathic target esterase (NTE/PNPLA6), but its mode of toxic action had not been fully elucidated. Zebrafish eleuthero-embryo and larva were used to characterize the differential action of the TCP isomers. The symmetric isomers inhibited phenyl valerate (PV)-NTE enzymatic activity in vivo with different IC50, while no effect was observed on acetylcholinesterase activity. Moreover, the locomotor behavior was also affected by tri-para-cresyl phosphate and tri-meta-cresyl phosphate, only ToCP exposure led to locomotor hyperactivity lasting several hours, associated with defects in the postural control system and an impaired phototactic response, as revealed by the visual motor response test. The electric field pulse motor response test demonstrated that a seizure-like, multiple C-bend-spaghetti phenotype may be significantly induced by ToCP only, independently of any inhibition of PV-NTE activity. Eleuthero-embryos exposed to picrotoxin, a known gamma-aminobutyric acid type-A receptor inhibitor, exhibited similar adverse outcomes to ToCP exposure. Thus, our results demonstrated that the TCP mode of toxic action was isomer specific and not initially related to modulation of PV-NTE activity. Furthermore, it was suggested that the molecular events involved were linked to an impairment of the balance between excitation and inhibition in neuronal circuits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Plastic in the ocean degrades to microplastic, thereby enhancing the leaching of incorporated plasticizers due to the increased particle surface. The uptake of microplastic-derived plasticizers by marine animals and the subsequent entry in the food chain raises concerns for adverse health effects in human beings. Frequently used plasticizers as the organophosphate ester tri-o-cresyl phosphate (TOCP) are known to affect the male reproductive system. However, the overall endocrine potential of TOCP and the underlying molecular mechanisms remain elusive as yet. In this study, we investigated the molecular effects of TOCP on estrogen receptor α (ERα)-transfected HEK-ESR1 cells and the human breast cancer cell line MCF-7. Applying virtual screening and molecular docking, we identified TOCP as potent ligand of ERα in silico. Microscale thermophoresis confirmed the binding in vitro with similar intensity as the natural ligand 17-β-estradiol. To identify the molecular mechanisms of TOCP-mediated effects, we used next-generation sequencing to analyze the gene expression pattern of TOCP-treated MCF-7 cells. RNA-sequencing revealed 22 differently expressed genes associated with ESR1 as upstream regulator: CYP1A1, SLC7A11, RUNX2, DDIT4, STC2, KLHL24, CCNG2, CEACAM5, SLC7A2, MAP1B, SLC7A5, IGF1R, CD55, FOSL2, VEGFA, and HSPA13 were upregulated and PRKCD, CCNE1, CEBPA, SFPQ, TNFAIP2, KRT19 were downregulated. The affected genes promote tumor growth by increasing angiogenesis and nutritional supply, favor invasion and metastasis, and interfere with the cell cycle. Based on the gene expression pattern, we conclude TOCP to mediate endocrine effects on MCF-7 cells by interacting with ERα.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The organophosphate-induced delayed neuropathy (OPIDN), often leads to paresthesias, ataxia and paralysis, occurs in the late-stage of acute poisoning or after repeated exposures to organophosphate (OP) insecticides or nerve agents, and may contribute to the Gulf War Syndrome. The acute phase of OP poisoning is often attributed to acetylcholinesterase inhibition. However, the underlying mechanism for the delayed neuropathy remains unknown and no treatment is available. Here we demonstrate that TRPA1 channel (Transient receptor potential cation channel, member A1) mediates OPIDN. A variety of OPs, exemplified by malathion, activates TRPA1 but not other neuronal TRP channels. Malathion increases the intracellular calcium levels and upregulates the excitability of mouse dorsal root ganglion neurons in vitro. Mice with repeated exposures to malathion also develop local tissue nerve injuries and pain-related behaviors, which resembles OPIDN. Both the neuropathological changes and the nocifensive behaviors can be attenuated by treatment of TRPA1 antagonist HC030031 or abolished by knockout of Trpa1 gene. In the classic hens OPIDN model, malathion causes nerve injuries and ataxia to a similar level as the positive inducer tri-ortho-cresyl phosphate (TOCP), which also activates TRPA1 channel. Treatment with HC030031 reduces the damages caused by malathion or tri-ortho-cresyl phosphate. Duloxetine and Ketotifen, two commercially available drugs exhibiting TRPA1 inhibitory activity, show neuroprotective effects against OPIDN and might be used in emergency situations. The current study suggests TRPA1 is the major mediator of OPIDN and targeting TRPA1 is an effective way for the treatment of OPIDN.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Acetylcholinesterase is the physiological target for acute toxicity of nerve agents. Attempts to protect acetylcholinesterase from phosphylation by nerve agents, is currently achieved by reversible inhibitors that transiently mask the enzyme active site. This approach either protects only peripheral acetylcholinesterase or may cause side effects. Thus, an alternative strategy consists in scavenging nerve agents in the bloodstream before they can reach acetylcholinesterase. Pre- or post-exposure administration of bioscavengers, enzymes that neutralize and detoxify organophosphorus molecules, is one of the major developments of new medical counter-measures. These enzymes act either as stoichiometric or catalytic bioscavengers. Human butyrylcholinesterase is the leading stoichiometric bioscavenger. Current efforts are devoted to its mass production with care to pharmacokinetic properties of the final product for extended lifetime. Development of specific reactivators of phosphylated butyrylcholinesterase, or variants with spontaneous reactivation activity is also envisioned for rapid in situ regeneration of the scavenger. Human paraoxonase 1 is the leading catalytic bioscavenger under development. Research efforts focus on improving its catalytic efficiency toward the most toxic isomers of nerve agents, by means of directed evolution-based strategies. Human prolidase appears to be another promising human enzyme. Other non-human efficient enzymes like bacterial phosphotriesterases or squid diisopropylfluorophosphatase are also considered though their intrinsic immunogenic properties remain challenging for use in humans. Encapsulation, PEGylation and other modifications are possible solutions to address this problem as well as that of their limited lifetime. Finally, gene therapy for in situ generation and delivery of bioscavengers is for the far future, but its proof of concept has been established.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Tri-ortho-cresyl phosphate (TOCP), an organophosphorus ester, can cause neurotoxicity such as organophosphorus ester-induced delayed neuropathy (OPIDN) in humans and sensitive animals. Moreover, it also affects the development of central nervous system and differentiation of neuronal cells. In this study, retinoic acid-induced differentiated human neuroblastoma SH-SY5Y cells are utilized to investigate the effects of TOCP on neurite outgrowth and the underlying mechanisms. We found that low concentrations of TOCP induced autophagy and inhibited neurite outgrowth in a dose-dependent manner with no effect on cell viability. The protein levels of high molecular weight neurofilament (NF-H), low molecular weight neurofilament (NF-L) and β-tubulin also decreased. Pretreatment cells with 3-methyladenine (3-MA), an autophagy inhibitor, not only inhibited the TOCP-induced autophagy, but also reversed the inhibition of neurite outgrowth and the degradation of NF-H, NF-L, and β-tubulin by TOCP. Taken together, these results indicated that TOCP treatment induced autophagy in differentiated SH-SY5Y cells, which lead to degradation of cytoskeletal components and inhibition of neurite outgrowth.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号