TMPRSS6 (matriptase-2)

  • 文章类型: Journal Article
    UNASSIGNED: Red cell pyruvate kinase deficiency (PKD) is a defect of glycolysis causing congenital non-spherocytic hemolytic anemia. PKD is transmitted as an autosomal recessive trait. The clinical features of PKD are highly variable, from mild to life-threatening anemia which can lead to death in the neonatal period. Most patients with PKD must receive regular transfusions in early childhood and as a consequence suffer from iron overloading.
    UNASSIGNED: Here, we report a Polish family with life-threatening hemolytic anemia of unknown etiology. Whole exome sequencing identified two heterozygous mutations, c.1529 G > A (p.R510Q) and c.1495 T > C (p.S499P) in the PKLR gene. Molecular modeling showed that the both PKLR mutations are responsible for major disturbance of the protein structure and functioning. Despite frequent transfusions the patients do not show any signs of iron overload and hepcidin, a major regulator of iron uptake, is undetectable in their serum. The patients were homozygous for the rs855791 variant of the TMPRSS6 gene which has earlier been shown to down-regulate iron absorption and accumulation.
    UNASSIGNED: The lack of iron overload despite a reduced level of hepcidin in two transfusion-dependent PKD patients suggests the existence of a hepcidin-independent mechanism of iron regulation preventing iron overloading.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Effective erythropoiesis requires an appropriate supply of iron and mechanisms regulating iron homeostasis and erythropoiesis are intrinsically linked. Iron dysregulation, typified by iron-deficiency anaemia and iron overload, is common in many clinical conditions and impacts the health of up to 30% of the world\'s population. The proteins transmembrane protease, serine 6 (TMPRSS6; also termed matriptase-2), HFE and transferrin receptor 2 (TFR2) play important and opposing roles in systemic iron homeostasis, by regulating expression of the iron regulatory hormone hepcidin. We have performed a systematic analysis of mice deficient in these three proteins and show that TMPRSS6 predominates over HFE and TFR2 in hepcidin regulation. The phenotype of mice lacking TMPRSS6 and TFR2 is characterized by severe anaemia and extramedullary haematopoiesis in the spleen. Stress erythropoiesis in these mice results in increased expression of the newly identified erythroid iron regulator erythroferrone, which does not appear to overcome the hepcidin overproduction mediated by loss of TMPRSS6. Extended analysis reveals that TFR2 plays an important role in erythroid cells, where it is involved in terminal erythroblast differentiation and the regulation of erythropoietin. In conclusion, we have identified an essential role for TFR2 in erythropoiesis that may provide new targets for the treatment of anaemia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号