TIR domain

  • 文章类型: Journal Article
    Toll样受体(TLRs)是先天免疫系统识别病原体和区分自身/非自身免疫成分的主要参与者。这些蛋白质存在于质膜或内体上,并在其胞外结构域识别病原体。它们的特征在于单个跨膜螺旋和胞内toll-白介素-1受体(TIR)结构域。很少有TIR直接调用下游信令,而其他人则需要衔接子的其他TIR结构域,例如含有TIR结构域的衔接子诱导干扰素β(TRIF)和TRIF相关的衔接子分子(TRAM)。在识别致病性脂多糖时,TLR4通过TIR结构域与细胞内TRAM二聚体二聚化并相互作用以募集下游信号接头(TRIF)。我们对衔接子TRAM的二聚体界面上的两个突变(P116H和C117H)的结构效应进行了深入研究,已知其废除下游信令。我们对结构进行了建模并进行了分子动力学研究,以破译这种效应的结构基础。我们观察到,与野生型(WT)和阳性对照突变体相比,这些突变导致复合物的回转半径增加,并导致相互作用能量值发生了一些变化。我们确定了高度相互作用的残基作为WT二聚体中的枢纽,以及一些在突变二聚体中丢失的中心。蛋白质残基路径的变化,阻碍了关键的A86/E87/D88/D89和T155/S156站点之间的信息流,对突变体进行了观察。总的来说,我们表明,这种残留物的变化可以产生微妙但远距离的影响,变构地影响信号路径。
    Toll-like receptors (TLRs) are major players in the innate immune system-recognizing pathogens and differentiating self/non-self components of immunity. These proteins are present either on the plasma membrane or endosome and recognize pathogens at their extracellular domains. They are characterized by a single transmembrane helix and an intracellular toll-interleukin-1 receptor (TIR) domain. Few TIRs directly invoke downstream signaling, while others require other TIR domains of adaptors like TIR domain-containing adaptor-inducing interferon-β (TRIF) and TRIF-related adaptor molecule (TRAM). On recognizing pathogenic lipopolysaccharides, TLR4 dimerises and interacts with the intracellular TRAM dimer through the TIR domain to recruit a downstream signaling adaptor (TRIF). We have performed an in-depth study of the structural effect of two mutations (P116H and C117H) at the dimeric interface of the adaptor TRAM, which are known to abrogate downstream signaling. We modeled the structure and performed molecular dynamics studies in order to decipher the structural basis of this effect. We observed that these mutations led to an increased radius of gyration of the complex and resulted in several changes to the interaction energy values when compared against the wild type (WT) and positive control mutants. We identified highly interacting residues as hubs in the WT dimer, and a few such hubs that were lost in the mutant dimers. Changes in the protein residue path, hampering the information flow between the crucial A86/E87/D88/D89 and T155/S156 sites, were observed for the mutants. Overall, we show that such residue changes can have subtle but long-distance effects, impacting the signaling path allosterically.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们小组先前的研究结果表明,Toll样受体4(TLR4)和核仁素协同介导呼吸道合胞病毒(RSV)感染人中枢神经细胞,但具体机制尚不清楚。在这里,我们用TIR(674-815aa)设计和合成了慢病毒,TLR4(del674-815aa),GAR(645-707aa),和NCL(del645-707aa)域,并通过药物筛选获得稳定的过表达细胞系,以及随后在不同时间点感染的RSV。激光共聚焦显微镜和免疫共沉淀用于观察TIR/GAR结构域的共定位和相互作用。蛋白质印迹分析用于检测p-NF-κB和LC3蛋白表达。使用实时PCR检测TLR4/NCLmRNA的表达。ELISA法检测IL-6、IL-1β、和TNF-α浓度和流式细胞仪分析用于细胞凋亡的研究。我们的结果表明,TIR和GAR结构域的过度表达可以加剧细胞凋亡和自噬。TIR和GAR结构域可以协同介导RSV感染并激活NF-κB信号通路,调节下游炎症因子的分泌,如IL-6,IL-1β,和TNF-α,并最终导致神经元炎症损伤。
    Previous research results of our group showed that Toll-like receptor 4 (TLR4) and nucleolin synergistically mediate respiratory syncytial virus (RSV) infection in human central neuron cells, but the specific mechanism remains unclear. Here we designed and synthesized lentiviruses with TIR (674-815 aa), TLR4 (del 674-815 aa), GAR (645-707 aa), and NCL (del 645-707 aa) domains, and obtained stable overexpression cell lines by drug screening, and subsequently infected RSV at different time points. Laser confocal microscopy and coimmunoprecipitation were used for the observation of co-localization and interaction of TIR/GAR domains. Western blot analysis was used for the detection of p-NF-κB and LC3 protein expression. Real-time PCR was used for the detection of TLR4/NCL mRNA expression. ELISA assay was used to measure IL-6, IL-1β, and TNF-α concentrations and flow cytometric analysis was used for the study of apoptosis. Our results suggest that overexpression of TIR and GAR domains can exacerbate apoptosis and autophagy, and that TIR and GAR domains can synergistically mediate RSV infection and activate the NF-κB signaling pathway, which regulates the secretion of downstream inflammatory factors, such as IL-6, IL-1β, and TNF-α, and ultimately leads to neuronal inflammatory injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物部署细胞表面和细胞内受体以检测病原体攻击并触发先天免疫应答。在宿主细胞内,核苷酸结合/富含亮氨酸的重复(NLR)蛋白家族充当病原体传感器或免疫防御输出和细胞死亡的下游介质,预防疾病。NLR介导的免疫的已建立的遗传基础揭示了植物用于对抗快速进化的微生物病原体的各种策略。NLR激活和信号传递到控制免疫执行的成分的分子机制尚不清楚。这里,我们回顾了最近对植物NLR传感器和信号功能的蛋白质结构和生化见解。当放在一起,数据显示了不同的NLR家族,无论是传感器还是信号传感器,融合基于核苷酸的第二信使和细胞钙以赋予免疫力。尽管植物中病原体激活的NLR参与植物特异性机制来促进防御,与哺乳动物NLR免疫受体对应物的比较突出了NLR免疫的一些共同工作原理。
    Plants deploy cell-surface and intracellular receptors to detect pathogen attack and trigger innate immune responses. Inside host cells, families of nucleotide-binding/leucine-rich repeat (NLR) proteins serve as pathogen sensors or downstream mediators of immune defence outputs and cell death, which prevent disease. Established genetic underpinnings of NLR-mediated immunity revealed various strategies plants adopt to combat rapidly evolving microbial pathogens. The molecular mechanisms of NLR activation and signal transmission to components controlling immunity execution were less clear. Here, we review recent protein structural and biochemical insights to plant NLR sensor and signalling functions. When put together, the data show how different NLR families, whether sensors or signal transducers, converge on nucleotide-based second messengers and cellular calcium to confer immunity. Although pathogen-activated NLRs in plants engage plant-specific machineries to promote defence, comparisons with mammalian NLR immune receptor counterparts highlight some shared working principles for NLR immunity across kingdoms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脓毒症是由感染引起的失调的全身炎症反应,导致多器官损伤和高死亡率,而没有有效的治疗。Corilagin,一种从传统中草药中提取的天然多酚,表现出强烈的抗炎特性。然而,Corilagin在脂多糖(LPS)诱导的脓毒症中的作用以及这一过程背后的分子机制尚未完全研究.在这里,我们确定了Corilagin对LPS处理的小鼠的作用,并使用了一种筛选方法,将表面等离子体共振与液相色谱-串联质谱(SPR-LC-MS/MS)相结合,以进一步探索Corilagin的治疗靶标。我们发现Corilagin能显著延长脓毒症小鼠的存活时间,减轻LPS处理的小鼠组织中的多器官损伤和焦亡相关蛋白的表达。体外研究表明,Corilagin抑制了LPS处理的巨噬细胞中的焦凋亡和NLRP3炎性体激活,然后进行ATP刺激,如GSDMD-NT和活化的caspase-1水平降低以及ASC斑点形成减少所反映的。机械上,Corilagin通过与ASC的caspase募集结构域(CARD)竞争性结合,减轻了ASC斑点的形成,并阻断了ASC与pro-caspase1的相互作用。此外,Corilagin通过靶向MyD88的TIR结构域中断了TLR4-MyD88的相互作用,导致NF-κB激活和NLRP3产生的抑制。此外,在LPS刺激的巨噬细胞中,Corilagin下调与几种炎症反应和炎症相关信号通路相关的基因。总的来说,我们的研究结果表明,Corilagin通过靶向巨噬细胞中MyD88的TIR结构域和结合ASC的CARD结构域对细胞凋亡的抑制作用在LPS诱导的脓毒症的保护中起着至关重要的作用.
    Sepsis is a dysregulated systemic inflammatory response caused by infection that leads to multiple organ injury and high mortality without effective treatment. Corilagin, a natural polyphenol extracted from traditional Chinese herbs, exhibits strong anti-inflammatory properties. However, the role for Corilagin in lipopolysaccharide (LPS)-induced sepsis and the molecular mechanisms underlying this process have not been completely explored. Here we determine the effect of Corilagin on LPS-treated mice and use a screening approach integrating surface plasmon resonance with liquid chromatography-tandem mass spectrometry (SPR-LC-MS/MS) to further explore the therapeutic target of Corilagin. We discovered that Corilagin significantly prolonged the survival time of septic mice, attenuated the multi-organ injury and the expression of pyroptosis-related proteins in tissues of LPS-treated mice. In vitro studies revealed that Corilagin inhibited pyroptosis and NLRP3 inflammasome activation in LPS-treated macrophages followed with ATP stimulation, as reflected by decreased levels of GSDMD-NT and activated caspase-1, and reduced ASC specks formation. Mechanistically, Corilagin alleviated the formation of ASC specks and blocked the interaction of ASC and pro-caspase1 by competitively binding with the caspase recruitment domain (CARD) of ASC. Additionally, Corilagin interrupted the TLR4-MyD88 interaction through targeting TIR domain of MyD88, leading to the inhibition of NF-κB activation and NLRP3 production. In addition, Corilagin downregulated genes associated with several inflammatory responses and inflammasome-related signaling pathways in LPS-stimulated macrophages. Overall, our results indicate that the inhibitory effect of Corilagin on pyroptosis through targeting TIR domain of MyD88 and binding the CARD domain of ASC in macrophages plays an essential role in protection against LPS-induced sepsis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    在位于法戈的北达科他州农业大学校园的美国农业部工作时,北达科他州,在1940年代和1950年代,HaroldH.Flor制定了共同进化的植物宿主-病原体相互作用的遗传原理,这些相互作用控制疾病抗性或易感性。他的“基因对基因”遗产在现代植物病理学中根深蒂固,并继续为植物免疫识别和信号传导的分子模型提供信息。在这次审查中,我们讨论了核苷酸结合域/富含亮氨酸重复序列(NLR)受体赋予植物免疫的最新生化见解,它们是自然界和栽培作物中主要的基因对基因抗性决定因素。病原体激活的NLR寡聚物(抗性体)的结构和生化分析揭示了不同的NLR亚型如何以各种方式聚集在钙(Ca2)信号上以促进病原体免疫和宿主细胞死亡。特别引人注目的是由植物toll-白介素1受体(TIR)结构域NLR酶促产生的基于核苷酸的信号的鉴定。这些小分子是TIR产生的环状和非环核苷酸信号的新兴家族的一部分,这些信号可以引导细菌中的免疫和细胞死亡反应。哺乳动物,和植物。一种结合的遗传,分子,植物NLR激活和信号的生化理解为对抗作物疾病提供了令人兴奋的新机会。[公式:见正文]版权所有©2023作者(S)。这是在CCBY-NC-ND4.0国际许可证下分发的开放访问文章。
    While working for the United States Department of Agriculture on the North Dakota Agricultural College campus in Fargo, North Dakota, in the 1940s and 1950s, Harold H. Flor formulated the genetic principles for coevolving plant host-pathogen interactions that govern disease resistance or susceptibility. His \'gene-for-gene\' legacy runs deep in modern plant pathology and continues to inform molecular models of plant immune recognition and signaling. In this review, we discuss recent biochemical insights to plant immunity conferred by nucleotide-binding domain/leucine-rich-repeat (NLR) receptors, which are major gene-for-gene resistance determinants in nature and cultivated crops. Structural and biochemical analyses of pathogen-activated NLR oligomers (resistosomes) reveal how different NLR subtypes converge in various ways on calcium (Ca2+) signaling to promote pathogen immunity and host cell death. Especially striking is the identification of nucleotide-based signals generated enzymatically by plant toll-interleukin 1 receptor (TIR) domain NLRs. These small molecules are part of an emerging family of TIR-produced cyclic and noncyclic nucleotide signals that steer immune and cell-death responses in bacteria, mammals, and plants. A combined genetic, molecular, and biochemical understanding of plant NLR activation and signaling provides exciting new opportunities for combatting diseases in crops. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Toll样受体(TLR)是存在于细胞表面的模式识别受体,在先天免疫中起着至关重要的作用。其中一个TLR,TLR4将LPS(脂多糖)识别为其配体,从而通过信号转导和结构域募集释放抗炎介质以及促炎细胞因子。TLR4在其细胞内TIR(Toll/白介素-1受体)结构域同源二聚化,这有助于TRAM/TICAM2(含有TIR结构域的衔接分子2)分子的募集。TRAM还包含TIR域,二聚化并充当衔接蛋白,以进一步募集TRIF/TICAM1(含TIR结构域的衔接分子1)蛋白,用于介导下游信号传导。除了LPS,TLR4还识别内源性配体,如纤维蛋白原,自身免疫性疾病和脓毒症中的HMGB1和透明质酸。我们采用计算方法来靶向TRAM,并从天然来源的小分子中识别小分子抑制剂,包含在超级自然II数据库中。最后,细胞报告分析和NMR研究能够鉴定有前途的先导化合物。因此,这项研究旨在减弱这些自身炎症条件下TLR4-TRAM-TRIF级联的信号传导。
    Toll-like receptors (TLRs) are pattern recognition receptors present on the surface of cells playing a crucial role in innate immunity. One of the TLRs, TLR4, recognizes LPS (Lipopolysaccharide) as its ligand leading to the release of anti-inflammatory mediators as well as pro-inflammatory cytokines through signal transduction and domain recruitment. TLR4 homodimerizes at its intracellular TIR (Toll/interleukin-1 receptor) domain that helps in the recruitment of the TRAM/TICAM2 (TIR domain-containing adaptor molecule 2) molecule. TRAM also contains TIR domain which in turn, dimerizes and functions as an adapter protein to further recruit TRIF/TICAM1 (TIR domain-containing adaptor molecule 1) protein for mediating downstream signaling. Apart from LPS, TLR4 also recognizes endogenous ligands like fibrinogen, HMGB1, and hyaluronan in autoimmune conditions and sepsis. We employed computational approaches to target TRAM and recognize small molecule inhibitors from small molecules of natural origin, as contained in the Super Natural II database. Finally, cell reporter assays and NMR studies enabled the identification of promising lead compounds. Hence, this study aims to attenuate the signaling of the TLR4-TRAM-TRIF cascade in these auto-inflammatory conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物抗病性涉及通过细胞表面模式识别受体检测微生物分子模式和通过细胞内NLR免疫受体检测病原体效应子。NLR分类为传感器NLR,参与效应子检测,或传感器NLR信令所需的助手NLR。含有TIR域的传感器NLR(TNL)需要辅助NLRNRG1和ADR1来获得电阻,防御的辅助NLR激活需要脂肪酶结构域蛋白EDS1,SAG101和PAD4。以前,我们发现NRG1以TNL激活依赖的方式与EDS1和SAG101结合[X.Sun等人。,纳特。Commun.12,3335(2021)]。我们在此报告在TNL启动的免疫期间,辅助NLRNRG1如何与其自身以及与EDS1和SAG101相关联。完全免疫需要细胞表面和细胞内免疫受体启动的信号传导的共激活和相互增强[B.P.M.Ngou,H.-K.安恩,P.丁,J.D.G.琼斯,Nature592,110-115(2021),M、袁等人。,自然592,105-109(2021)]。我们发现,虽然激活TNL足以促进NRG1-EDS1-SAG101相互作用,寡聚NRG1-EDS1-SAG101抗性体的形成需要细胞表面受体启动防御的额外共激活。这些数据表明,体内NRG1-EDS1-SAG101抗性体的形成是连接细胞内和细胞表面受体信号传导途径的机制的一部分。
    Plant disease resistance involves both detection of microbial molecular patterns by cell-surface pattern recognition receptors and detection of pathogen effectors by intracellular NLR immune receptors. NLRs are classified as sensor NLRs, involved in effector detection, or helper NLRs required for sensor NLR signaling. TIR-domain-containing sensor NLRs (TNLs) require helper NLRs NRG1 and ADR1 for resistance, and helper NLR activation of defense requires the lipase-domain proteins EDS1, SAG101, and PAD4. Previously, we found that NRG1 associates with EDS1 and SAG101 in a TNL activation-dependent manner [X. Sun et al., Nat. Commun. 12, 3335 (2021)]. We report here how the helper NLR NRG1 associates with itself and with EDS1 and SAG101 during TNL-initiated immunity. Full immunity requires coactivation and mutual potentiation of cell-surface and intracellular immune receptor-initiated signaling [B. P. M. Ngou, H.-K. Ahn, P. Ding, J. D. G. Jones, Nature 592, 110-115 (2021), M. Yuan et al., Nature 592, 105-109 (2021)]. We find that while activation of TNLs is sufficient to promote NRG1-EDS1-SAG101 interaction, the formation of an oligomeric NRG1-EDS1-SAG101 resistosome requires the additional coactivation of cell-surface receptor-initiated defense. These data suggest that NRG1-EDS1-SAG101 resistosome formation in vivo is part of the mechanism that links intracellular and cell-surface receptor signaling pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    2011年,诺贝尔生理学或医学奖授予三位免疫学家:布鲁斯·A·比特勒,JulesA.Hoffmann,还有RalphM.Steinman.斯坦曼在树突状细胞和适应性免疫方面的工作获得了荣誉,Beutler和Hoffman因其对先天免疫发现的贡献而获奖。1996年,霍夫曼发现toll基因对于提高果蝇的抗菌反应至关重要,首先将这种发育基因与免疫信号联系起来。两年后,Beutler通过描述类似Toll的基因建立在这一观察的基础上,tlr4,作为细菌产物LPS的受体,代表先天免疫激活和保护哺乳动物免受细菌感染的关键步骤。这些出版物引领了先天免疫传感的研究,并在接下来的几年和几十年中引发了对先天防御机制的巨大兴趣。今天,Beutler和Hoffmann的研究不仅发现了多种TLRs在先天免疫中的作用,而且对先天免疫系统的分子成分有了更广泛的了解。在这次审查中,我们的目标是收集Beutler和Hoffmann出版物的发现,仔细研究发育生物学和免疫学的早期进展如何融合到获得诺贝尔奖的研究中。我们还将讨论这些发现如何影响未来的研究,并强调他们今天的重要性。
    In 2011, the Nobel Prize in Physiology or Medicine was awarded to three immunologists: Bruce A. Beutler, Jules A. Hoffmann, and Ralph M. Steinman. While Steinman was honored for his work on dendritic cells and adaptive immunity, Beutler and Hoffman received the prize for their contributions to discoveries in innate immunity. In 1996, Hoffmann found the toll gene to be crucial for mounting antimicrobial responses in fruit flies, first implicating this developmental gene in immune signaling. Two years later, Beutler built on this observation by describing a Toll-like gene, tlr4, as the receptor for the bacterial product LPS, representing a crucial step in innate immune activation and protection from bacterial infections in mammals. These publications spearheaded research in innate immune sensing and sparked a huge interest regarding innate defense mechanisms in the following years and decades. Today, Beutler and Hoffmann\'s research has not only resulted in the discovery of the role of multiple TLRs in innate immunity but also in a much broader understanding of the molecular components of the innate immune system. In this review, we aim to collect the discoveries leading up to the publications of Beutler and Hoffmann, taking a close look at how early advances in both developmental biology and immunology converged into the research awarded with the Nobel Prize. We will also discuss how these discoveries influenced future research and highlight the importance they hold today.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    轴突被认为是神经系统中特别脆弱的组成部分;神经元轴突的损伤导致神经元与其他细胞沟通能力的有效沉默。因此,神经系统已经发展出适应轴突损伤的可塑性机制。这些包括促进受损轴突变性和清除的急性机制,在某些情况下,启动新的轴突生长和突触形成以重建丢失的连接。在这里,我们回顾了这些不同的过程如何受到治疗靶向酶SARM1的影响。SARM1催化NAD+的分解,which,当无法缓解时,会导致这种必需代谢产物的流失和轴突变性。SARM1的酶活性也触发下游信号通路的激活,在开发中体现了SARM1的许多功能,先天免疫和对损伤的反应。在这里,我们将考虑SARM1与协调细胞适应神经系统损伤的损伤信号通路之间的多个交叉点。
    Axons are considered to be particularly vulnerable components of the nervous system; impairments to a neuron\'s axon leads to an effective silencing of a neuron\'s ability to communicate with other cells. Nervous systems have therefore evolved plasticity mechanisms for adapting to axonal damage. These include acute mechanisms that promote the degeneration and clearance of damaged axons and, in some cases, the initiation of new axonal growth and synapse formation to rebuild lost connections. Here we review how these diverse processes are influenced by the therapeutically targetable enzyme SARM1. SARM1 catalyzes the breakdown of NAD+, which, when unmitigated, can lead to rundown of this essential metabolite and axonal degeneration. SARM1\'s enzymatic activity also triggers the activation of downstream signaling pathways, which manifest numerous functions for SARM1 in development, innate immunity and responses to injury. Here we will consider the multiple intersections between SARM1 and the injury signaling pathways that coordinate cellular adaptations to nervous system damage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    NADaseSARM1(含有1的无菌α和TIR基序)是轴突变性的关键执行者,也是几种神经退行性疾病的治疗靶标。我们表明,有效的SARM1抑制剂与烟酰胺腺嘌呤二核苷酸(NAD)的烟酰胺部分进行碱基交换,以产生真正的抑制剂1AD。我们报告了SARM1与1AD复合的结构,NAD+模拟物和变构激活剂烟酰胺单核苷酸(NMN)。NMN结合触发Armadillo重复序列(ARM)域的重新定向,这破坏了ARM:TIR相互作用并导致双链TIR结构域组装的形成。活性位点跨越这些组件中的两个分子,解释了TIR结构域自缔合对NAD酶活性和轴突变性的要求。我们的结果揭示了SARM1激活和底物结合的机制,为设计针对SARM1的新疗法提供合理的途径。
    The NADase SARM1 (sterile alpha and TIR motif containing 1) is a key executioner of axon degeneration and a therapeutic target for several neurodegenerative conditions. We show that a potent SARM1 inhibitor undergoes base exchange with the nicotinamide moiety of nicotinamide adenine dinucleotide (NAD+) to produce the bona fide inhibitor 1AD. We report structures of SARM1 in complex with 1AD, NAD+ mimetics and the allosteric activator nicotinamide mononucleotide (NMN). NMN binding triggers reorientation of the armadillo repeat (ARM) domains, which disrupts ARM:TIR interactions and leads to formation of a two-stranded TIR domain assembly. The active site spans two molecules in these assemblies, explaining the requirement of TIR domain self-association for NADase activity and axon degeneration. Our results reveal the mechanisms of SARM1 activation and substrate binding, providing rational avenues for the design of new therapeutics targeting SARM1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号