TBX5

TBX5
  • 文章类型: Journal Article
    左心发育不良综合征(HLHS)是一种以左心室发育不全为特征的严重先天性心血管畸形,主动脉,和心脏左侧的其他结构。病理定义包括主动脉瓣和二尖瓣的闭锁或狭窄。尽管HLHS的临床和外科治疗取得了相当大的进展,死亡率和发病率仍然令人担忧。HLHS管理取得进展的一个障碍是对其原因了解不足。一些证据表明HLHS的遗传起源。首先,一些HLHS病例与细胞遗传学异常相关(例如,特纳综合征)。第二,对HLHS家族聚集和相关心血管畸形的研究已经确定HLHS是可遗传的。第三,已经确定了编码影响HLHS遗传的基因的基因组区域。一起来看,这些不同的研究为HLHS和相关心脏表型的遗传起源提供了强有力的证据.然而,使用简单的孟德尔继承模型,对“导致”HLHS的单一遗传变异的鉴定仍然难以捉摸,在大多数情况下,遗传原因仍然未知。这些结果表明HLHS遗传是复杂的而不是简单的。这一结论的含义是,研究人员必须超越可以发现单一致病变异的预期。利用复杂的模型来分析高通量遗传数据需要仔细考虑研究设计。
    Hypoplastic left heart syndrome (HLHS) is a severe congenital cardiovascular malformation characterized by hypoplasia of the left ventricle, aorta, and other structures on the left side of the heart. The pathologic definition includes atresia or stenosis of both the aortic and mitral valves. Despite considerable progress in clinical and surgical management of HLHS, mortality and morbidity remain concerns. One barrier to progress in HLHS management is poor understanding of its cause. Several lines of evidence point to genetic origins of HLHS. First, some HLHS cases have been associated with cytogenetic abnormalities (e.g., Turner syndrome). Second, studies of family clustering of HLHS and related cardiovascular malformations have determined HLHS is heritable. Third, genomic regions that encode genes influencing the inheritance of HLHS have been identified. Taken together, these diverse studies provide strong evidence for genetic origins of HLHS and related cardiac phenotypes. However, using simple Mendelian inheritance models, identification of single genetic variants that \"cause\" HLHS has remained elusive, and in most cases, the genetic cause remains unknown. These results suggest that HLHS inheritance is complex rather than simple. The implication of this conclusion is that researchers must move beyond the expectation that a single disease-causing variant can be found. Utilization of complex models to analyze high-throughput genetic data requires careful consideration of study design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Ebstein异常是三尖瓣的先天性畸形,其特征是瓣膜小叶的异常附着,导致不同程度的瓣膜功能障碍。该实体的解剖特征是三尖瓣的间隔和后小叶的附着向下移位。其他心内畸形是常见的。从胚胎学的角度来看,未来右心房的腔没有直接连接到发育中的右心室的孔口。本章概述了目前对这种联系是如何形成的,以及三尖瓣畸形是如何由参与这一过程的分子和形态事件的失调引起的。此外,描述了显示Ebstein异常特征的小鼠模型和自然发生的犬三尖瓣畸形模型,并将其与人类模型进行了比较。尽管Ebstein的异常仍然是迄今为止了解最少的心脏畸形之一,这里总结的研究提供,总的来说,单基因和寡基因因素驱动发病机制的证据。
    Ebstein\'s anomaly is a congenital malformation of the tricuspid valve characterized by abnormal attachment of the valve leaflets, resulting in varying degrees of valve dysfunction. The anatomic hallmarks of this entity are the downward displacement of the attachment of the septal and posterior leaflets of the tricuspid valve. Additional intracardiac malformations are common. From an embryological point of view, the cavity of the future right atrium does not have a direct orifice connected to the developing right ventricle. This chapter provides an overview of current insight into how this connection is formed and how malformations of the tricuspid valve arise from dysregulation of molecular and morphological events involved in this process. Furthermore, mouse models that show features of Ebstein\'s anomaly and the naturally occurring model of canine tricuspid valve malformation are described and compared to the human model. Although Ebstein\'s anomaly remains one of the least understood cardiac malformations to date, the studies summarized here provide, in aggregate, evidence for monogenic and oligogenic factors driving pathogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    瓣膜形成的过程是复杂的过程,其涉及在精确时间的各种途径之间的复杂的相互作用。虽然我们还没有完全阐明导致正常瓣膜形成的分子途径,我们已经确定了这个过程中的几个主要参与者。我们现在能够暗示TGF-β,BMP,和NOTCH怀疑三尖瓣闭锁(TA),以及它们的下游目标:NKX2-5、TBX5、NFATC1、GATA4和SOX9。我们知道TGF-β和BMP途径在SMAD4分子上汇聚,我们认为这种分子在将两种途径与TA联系起来方面起着非常重要的作用。同样,我们研究了NOTCH途径,并将HEY2确定为该途径与TA之间的潜在联系.与TA有关的另一种转录因子是NFATC1。虽然存在几种小鼠模型,包括部分TA异常作为其表型,没有真正的小鼠模型可以说代表TA。弥合这一差距肯定会阐明这一复杂的分子途径,并有助于更好地了解疾病过程。
    The process of valve formation is a complex process that involves intricate interplay between various pathways at precise times. Although we have not completely elucidated the molecular pathways that lead to normal valve formation, we have identified a few major players in this process. We are now able to implicate TGF-ß, BMP, and NOTCH as suspects in tricuspid atresia (TA), as well as their downstream targets: NKX2-5, TBX5, NFATC1, GATA4, and SOX9. We know that the TGF-ß and the BMP pathways converge on the SMAD4 molecule, and we believe that this molecule plays a very important role to tie both pathways to TA. Similarly, we look at the NOTCH pathway and identify the HEY2 as a potential link between this pathway and TA. Another transcription factor that has been implicated in TA is NFATC1. While several mouse models exist that include part of the TA abnormality as their phenotype, no true mouse model can be said to represent TA. Bridging this gap will surely shed light on this complex molecular pathway and allow for better understanding of the disease process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    半月瓣和主动脉弓的病变可以单独发生,也可以作为描述良好的临床综合征的一部分发生。将讨论钙化性主动脉瓣疾病的多基因原因,包括NOTCH1突变的关键作用。此外,将概述二叶主动脉瓣疾病的复杂特征,无论是在散发性/家族性病例中,还是在相关综合征中,比如Alagille,威廉姆斯,和歌舞uki综合征。主动脉弓异常,特别是主动脉缩窄和主动脉弓中断,包括它们与特纳和22q11删除等综合征的关联,分别,也讨论了。最后,总结了先天性肺动脉瓣狭窄的遗传基础,特别注意Ras-/丝裂原活化蛋白激酶(Ras/MAPK)途径综合征和其他不太常见的关联,比如Holt-Oram综合征.
    Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    法洛四联症(TOF)和右心室双出口(DORV)是由于第二心脏区域和神经c的紊乱而导致的锥面缺损,可以作为孤立的畸形或作为多器官综合征的一部分发生。它们的病因是多因素的并且特征在于重叠的遗传原因。在这一章中,我们展示了这两种疾病背后的不同遗传改变,范围从染色体异常如非整倍体和结构突变到影响不同基因的罕见单核苷酸变异。例如,心脏转录因子NKX2-5,GATA4和HAND2的突变已在分离的TOF病例中得到鉴定,而TBX5和22q11缺失的突变,导致TBX1单倍体功能不全,引起Holt-Oram和DiGeorge综合征,分别。此外,参与信号通路的基因,侧向性测定,在TOF和/或DORV患者中也发现了表观遗传机制的突变。最后,全基因组关联研究确定了与TOF风险相关的常见单核苷酸多态性.
    Tetralogy of Fallot (TOF) and double-outlet right ventricle (DORV) are conotruncal defects resulting from disturbances of the second heart field and the neural crest, which can occur as isolated malformations or as part of multiorgan syndromes. Their etiology is multifactorial and characterized by overlapping genetic causes. In this chapter, we present the different genetic alterations underlying the two diseases, which range from chromosomal abnormalities like aneuploidies and structural mutations to rare single nucleotide variations affecting distinct genes. For example, mutations in the cardiac transcription factors NKX2-5, GATA4, and HAND2 have been identified in isolated TOF cases, while mutations of TBX5 and 22q11 deletion, leading to haploinsufficiency of TBX1, cause Holt-Oram and DiGeorge syndrome, respectively. Moreover, genes involved in signaling pathways, laterality determination, and epigenetic mechanisms have also been found mutated in TOF and/or DORV patients. Finally, genome-wide association studies identified common single nucleotide polymorphisms associated with the risk for TOF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    室间隔是一个复杂的过程,涉及心脏发育的主要基因,作用于第一和第二心脏区域的心肌细胞,和心内膜垫的间充质细胞。这些基因,转录因子的编码,彼此互动,以及它们的差异表达决定了表型的严重程度。在这一章中,我们将描述正常心脏中室间隔的形成,以及导致室间隔缺损的四种主要解剖类型的分子机制:出口,入口,肌肉,和中央膜周,由于室间隔不同部位的发育失败。动物模型实验,特别是转基因小鼠系,帮助我们破译了室间隔的分子决定因素。然而,必须对这些模型中发现的解剖表型进行精确描述,才能更好地理解导致各种类型VSD的复杂机制.
    Ventricular septation is a complex process which involves the major genes of cardiac development, acting on myocardial cells from first and second heart fields, and on mesenchymal cells from endocardial cushions. These genes, coding for transcription factors, interact with each other, and their differential expression conditions the severity of the phenotype. In this chapter, we will describe the formation of the ventricular septum in the normal heart, as well as the molecular mechanisms leading to the four main anatomic types of ventricular septal defects: outlet, inlet, muscular, and central perimembranous, resulting from failure of development of the different parts of the ventricular septum. Experiments on animal models, particularly transgenic mouse lines, have helped us to decipher the molecular determinants of ventricular septation. However, a precise description of the anatomic phenotypes found in these models is mandatory to achieve a better comprehension of the complex mechanisms responsible for the various types of VSDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    室间隔缺损(VSD)被认为是最常见的先天性心脏病(CHD)之一。占所有心脏畸形的40%,并在个别患者和家庭中以孤立的CHD以及其他心脏和心外先天性畸形发生。VSD的遗传病因复杂且异常异质性。据报道,染色体异常,例如非整倍性和结构变异以及各种基因中的罕见点突变与这种心脏缺陷有关。这包括具有已知遗传原因的明确定义的综合征(例如,DiGeorge综合征和Holt-Oram综合征)以及迄今为止尚未定义的以非特异性症状为特征的综合征形式。编码心脏转录因子的基因突变(例如,NKX2-5和GATA4)和信号分子(例如,CFC1)在VSD病例中最常见。此外,新的高分辨率方法,如比较基因组杂交,能够发现大量不同的拷贝数变异,导致通常包含多个基因的染色体区域的增加或丢失,VSD患者。在这一章中,我们将描述在VSD患者中观察到的广泛遗传异质性,并考虑该领域的最新进展.
    Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    房间隔缺损的临床表现和处理的相对简单性掩盖了发育发病机理的复杂性。这里,我们描述了房间隔的解剖发育和静脉回流到心房腔。实验模型表明,突变和自然发生的遗传变异如何影响发育步骤,从而导致椭圆形窝内的缺陷,所谓的secundum缺陷,或其他心房通信,如静脉窦缺损或原孔缺损。
    The relative simplicity of the clinical presentation and management of an atrial septal defect belies the complexity of the developmental pathogenesis. Here, we describe the anatomic development of the atrial septum and the venous return to the atrial chambers. Experimental models suggest how mutations and naturally occurring genetic variation could affect developmental steps to cause a defect within the oval fossa, the so-called secundum defect, or other interatrial communications, such as the sinus venosus defect or ostium primum defect.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管房间隔缺损(ASD)可以根据其解剖位置进行细分,人类遗传学和遗传咨询的一个重要方面是区分没有心外特征的孤立和熟悉的病例和伴有心外异常的综合征病例,如发育迟缓。分离或家族性病例倾向于显示与重要心脏转录因子相关的基因和编码肌节蛋白的基因的遗传改变。相比之下,在综合征病例中观察到的具有遗传改变的基因谱是多种多样的。目前,它指出了与心肌发生和ASD发病机制失调相关的不同途径和基因网络。因此,本章反映了当前的知识,并强调了在人类遗传学研究中观察到的稳定关联。它概述了这些亚型中不同类型的遗传改变,包括基于全基因组关联研究(GWAS)的常见关联,它强调了最常见的与ASD发病机制相关的综合征。
    Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    心脏发育是一个由复杂的转录网络控制的微调过程,其中转录因子(TF)与其他调节层相互作用。在这一章中,我们介绍核心心脏TFs,包括Gata,手,Nkx2,Mef2,Srf,Tbx这些因子调节彼此的表达,并且还可以组合方式作用于它们的下游靶标。它们的破坏导致小鼠的各种心脏表型,人类的突变与先天性心脏缺陷有关。在本章的第二部分,我们讨论了不同级别的监管,包括顺式监管元素,染色质结构,和microRNAs,可以与转录因子相互作用,调节它们的功能,或者是下游目标。最后,提供了导致人类先天性心脏病的心脏调节网络紊乱的例子。
    Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other\'s expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号