TBR2

TBR2
  • 文章类型: Journal Article
    神经干细胞(NSC)通过细胞分裂分化为神经元命运的中间祖细胞(IPC)。虽然从NSC到IPC的分化是一个离散的过程,最近的转录组分析确定了在这个过程中连续的转录轨迹,提出了如何调和这些相互矛盾的观察的问题。在小鼠NSC中,Hes1表达振荡,调节前神经基因Neurog2的振荡表达,而IPC中Hes1的表达消失。因此,从Hes1振荡到抑制的转变参与了神经干细胞向IPC的分化。这里,我们发现Neurog2振荡诱导Tbr2的积累,抑制Hes1表达,在NSC中产生IPC样基因表达状态。在没有Tbr2的情况下,Hes1表达上调,减少IPC的形成。这些结果表明,Neurog2-Tbr2轴在NSC中形成了一个连续的转录轨迹到IPC样神经发生状态,然后通过细胞分裂分化为IPC。
    Neural stem cells (NSCs) differentiate into neuron-fated intermediate progenitor cells (IPCs) via cell division. Although differentiation from NSCs to IPCs is a discrete process, recent transcriptome analyses identified a continuous transcriptional trajectory during this process, raising the question of how to reconcile these contradictory observations. In mouse NSCs, Hes1 expression oscillates, regulating the oscillatory expression of the proneural gene Neurog2, while Hes1 expression disappears in IPCs. Thus, the transition from Hes1 oscillation to suppression is involved in the differentiation of NSCs to IPCs. Here, we found that Neurog2 oscillations induce the accumulation of Tbr2, which suppresses Hes1 expression, generating an IPC-like gene expression state in NSCs. In the absence of Tbr2, Hes1 expression is up-regulated, decreasing the formation of IPCs. These results indicate that the Neurog2-Tbr2 axis forms a continuous transcriptional trajectory to an IPC-like neurogenic state in NSCs, which then differentiate into IPCs via cell division.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类无义介导的mRNA衰变(NMD)因子的突变在神经发育障碍中富集。我们表明,小鼠胚胎神经祖细胞中关键NMD因子Upf2的缺失会导致围产期小头畸形,而未成熟神经元中的缺失则不会。表明NMD在祖细胞中的关键作用。Upf2敲除(KO)延长放射状神经胶质祖细胞的细胞周期,促进它们向中间祖细胞的过渡,并导致上层神经元减少。CRISPRi筛选确定了Trp53敲低挽救Upf2KO祖细胞而没有全局逆转NMD抑制,暗示大多数NMD靶标对细胞周期缺陷的边际贡献。整合的功能基因组学表明,NMD降解选择性TRP53下游靶标,包括Cdkn1a,which,如果没有国家导弹防御系统的压制,减缓细胞周期。Trp53KO恢复祖细胞池并挽救Upf2KO小鼠的小头畸形。因此,NMD在发育中的大脑中的一个生理作用是降解选择性TRP53靶标以控制祖细胞周期和大脑大小。
    Mutations in human nonsense-mediated mRNA decay (NMD) factors are enriched in neurodevelopmental disorders. We show that deletion of key NMD factor Upf2 in mouse embryonic neural progenitor cells causes perinatal microcephaly but deletion in immature neurons does not, indicating NMD\'s critical roles in progenitors. Upf2 knockout (KO) prolongs the cell cycle of radial glia progenitor cells, promotes their transition into intermediate progenitors, and leads to reduced upper-layer neurons. CRISPRi screening identified Trp53 knockdown rescuing Upf2KO progenitors without globally reversing NMD inhibition, implying marginal contributions of most NMD targets to the cell cycle defect. Integrated functional genomics shows that NMD degrades selective TRP53 downstream targets, including Cdkn1a, which, without NMD suppression, slow the cell cycle. Trp53KO restores the progenitor cell pool and rescues the microcephaly of Upf2KO mice. Therefore, one physiological role of NMD in the developing brain is to degrade selective TRP53 targets to control progenitor cell cycle and brain size.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌肉骨骼组织如肌腱的发育,Enthesis,骨依赖于间充质祖细胞的增殖和分化。Gli1细胞已被描述为几种组织中的推定干细胞,并被认为在组织形成和维持中起关键作用。例如,论文,连接肌腱和骨骼的纤维软骨组织,在出生后被Gli1祖细胞池矿化。这些细胞受刺猬信号调节,但目前尚不清楚TGFβ信号是否,必要的肌腱发生,也在他们的行为中发挥作用。为了检查TGFβ信号传导在Gli1+细胞功能中的作用,TGFβ的受体,在P5时,TbR2在小鼠的Gli1谱系细胞中缺失。这些细胞中TGFβ信号传导的减少导致P56肌腱形成的缺陷,包括在肌腱形成基础上的骨形态计量学缺陷和机械性能下降。这些Gli1+细胞的免疫组织化学染色显示TGFβ信号传导的缺失减少了增殖并增加了凋亡。使用从小鼠尾腱分离的Gli1细胞进行的体外实验表明,TGFβ通过规范和非规范途径控制细胞增殖和分化,而TGFβ通过与其远处的增强子结合直接控制肌腱转录因子巩膜。这些结果对肌腱和发育病理的治疗发展具有重要意义。
    The development of musculoskeletal tissues such as tendon, enthesis, and bone relies on proliferation and differentiation of mesenchymal progenitor cells. Gli1+ cells have been described as putative stem cells in several tissues and are presumed to play critical roles in tissue formation and maintenance. For example, the enthesis, a fibrocartilage tissue that connects tendon to bone, is mineralized postnatally by a pool of Gli1+ progenitor cells. These cells are regulated by hedgehog signaling, but it is unclear if TGFβ signaling, necessary for tenogenesis, also plays a role in their behavior. To examine the role of TGFβ signaling in Gli1+ cell function, the receptor for TGFβ, TbR2, was deleted in Gli1-lineage cells in mice at P5. Decreased TGFβ signaling in these cells led to defects in tendon enthesis formation by P56, including defective bone morphometry underlying the enthesis and decreased mechanical properties. Immunohistochemical staining of these Gli1+ cells showed that loss of TGFβ signaling reduced proliferation and increased apoptosis. In vitro experiments using Gli1+ cells isolated from mouse tail tendons demonstrated that TGFβ controls cell proliferation and differentiation through canonical and non-canonical pathways and that TGFβ directly controls the tendon transcription factor scleraxis by binding to its distant enhancer. These results have implications in the development of treatments for tendon and enthesis pathologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脂多糖(LPS)是toll样受体4的天然激动剂,在先天免疫中起作用。本研究评估了脑室下区(SVZ)祖细胞中LPS介导的神经发生调节,也就是说,基底放射状胶质细胞和中间祖细胞(IPs),雪貂。在出生后第6天和第7天(PDs)皮下注射LPS(500μg/g体重)。此外,5-乙炔基-2'-脱氧尿苷(EdU)和5-溴-2'-脱氧尿苷(BrdU)分别用于PDs5和7,标记内部SVZ(iSVZ)和外部SVZ(oSVZ)中的增殖后和增殖细胞。在暴露于LPS的雪貂的iSVZ中观察到的BrdU单标记增殖细胞的密度明显高于对照组,但在增殖后的EdU单标记和EdU/BrdU双标记自我更新细胞中未观察到。BrdU单标记细胞在暴露于LPS的雪貂中的Tbr2免疫染色比例(22.2%)低于对照组(42.6%),而在暴露于LPS的雪貂中的Ctip2免疫染色比例(22.2%)高于对照组(8.6%)。目前的发现表明,LPS修饰了SVZ祖细胞的神经发生。新生儿LPS暴露促进SVZ祖细胞的增殖,然后将表达Tbr2的IP分化为表达Ctip2的未成熟神经元。
    Lipopolysaccharide (LPS) is a natural agonist of toll-like receptor 4 that serves a role in innate immunity. The current study evaluated the LPS-mediated regulation of neurogenesis in the subventricular zone (SVZ) progenitors, that is, the basal radial glia and intermediate progenitors (IPs), in ferrets. Ferret pups were subcutaneously injected with LPS (500 μg/g of body weight) on postnatal days (PDs) 6 and 7. Furthermore, 5-ethynyl-2\'-deoxyuridine (EdU) and 5-bromo-2\'-deoxyuridine (BrdU) were administered on PDs 5 and 7, respectively, to label the post-proliferative and proliferating cells in the inner SVZ (iSVZ) and outer SVZ (oSVZ). A significantly higher density of BrdU single-labeled proliferating cells was observed in the iSVZ of LPS-exposed ferrets than in controls but not in post-proliferative EdU single-labeled and EdU/BrdU double-labeled self-renewing cells. BrdU single-labeled cells exhibited a lower proportion of Tbr2 immunostaining in LPS-exposed ferrets (22.2%) than in controls (42.6%) and a higher proportion of Ctip2 immunostaining in LPS-exposed ferrets (22.2%) than in controls (8.6%). The present findings revealed that LPS modified the neurogenesis of SVZ progenitors. Neonatal LPS exposure facilitates the proliferation of SVZ progenitors, followed by the differentiation of Tbr2-expressing IPs into Ctip2-expressing immature neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    海马体与基本的大脑功能有关,比如学习和记忆。与非人猿相比,人类海马体积明显大于预期,暗示最近的扩张。中间祖细胞,它们能够在最终的神经源性分裂之前经历多轮增殖分裂,可能在进化海马扩张中起作用。为了研究猿海马神经发生的基因调控网络的进化,我们利用人和黑猩猩诱导的多能干细胞分化为TBR2(或EOMES)阳性的海马中间祖细胞(hpIPCs).我们发现hpIPCs中活跃的基因网络在人类和黑猩猩之间有显著差异,2500个基因差异表达。我们证明了物种特异性转座子衍生的增强子有助于这些转录组差异。年轻的转座子,主要是内源性逆转录病毒和SINE-Vntr-Alus(SVA),以特定于物种的方式被选作增强剂。人类特异性SVAs为数千个新的TBR2结合位点提供了底物,和CRISPR介导的抑制这些SVAs减弱了~25%的基因表达,这些基因在人类中间祖细胞中相对于黑猩猩中的相同细胞群上调。
    The hippocampus is associated with essential brain functions, such as learning and memory. Human hippocampal volume is significantly greater than expected compared with that of non-human apes, suggesting a recent expansion. Intermediate progenitors, which are able to undergo multiple rounds of proliferative division before a final neurogenic division, may have played a role in evolutionary hippocampal expansion. To investigate the evolution of gene regulatory networks underpinning hippocampal neurogenesis in apes, we leveraged the differentiation of human and chimpanzee induced pluripotent stem cells into TBR2 (or EOMES)-positive hippocampal intermediate progenitor cells (hpIPCs). We found that the gene networks active in hpIPCs are significantly different between humans and chimpanzees, with ∼2500 genes being differentially expressed. We demonstrate that species-specific transposon-derived enhancers contribute to these transcriptomic differences. Young transposons, predominantly endogenous retroviruses and SINE-Vntr-Alus (SVAs), were co-opted as enhancers in a species-specific manner. Human-specific SVAs provided substrates for thousands of novel TBR2-binding sites, and CRISPR-mediated repression of these SVAs attenuated the expression of ∼25% of the genes that are upregulated in human intermediate progenitors relative to the same cell population in the chimpanzee.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们先前观察到发育边缘锌缺乏影响神经发生。母体邻苯二甲酸盐暴露可能通过触发急性期反应破坏胎儿锌稳态,导致母体肝脏锌潴留,限制胎儿的锌利用率。因此,我们目前调查了大鼠妊娠期间暴露于邻苯二甲酸二-2-乙基己酯(DEHP)是否通过损害锌稳态而改变胎儿脑神经发生.大坝消耗足够的(25μg锌/g饮食)(C)或边际锌缺乏(MZD)(10μg锌/g饮食)饮食,不含或含DEHP(300mg/kgBW)(C+DEHP,MZD+DEHP)从胚胎天(E)0到E19。为了评估神经发生,我们测量了神经祖细胞(NPC)增殖和分化的参数。母体暴露于DEHP和/或锌缺乏会降低胎儿大脑皮层组织(CT)锌浓度。参与NPC增殖的转录因子(PAX6,SOX2,EMX1),分化(TBR2,TBR1)和成熟神经元(NeuN)在MZD中较低,MZD+DEHP和C+DEHP比在CE19脑CT,在MZD+DEHP组中最低。VGLUT1电平,谷氨酸能神经元的标记,显示出类似的模式。GABA能神经元标志物的水平,GAD65,组间没有差异。MZD和DEHP均降低了磷酸化ERK1/2水平,特别是在MZD+DEHP组中。MEHP处理的人神经母细胞瘤IMR-32细胞和DEHP处理的大坝的E19大脑显示,锌调节的磷酸酶PP2A可能部分负责DEHP介导的ERK1/2下调和神经发生受损。总的来说,妊娠期暴露于DEHP会导致继发性锌缺乏和神经发生受损。这些有害影响可能对成年后代的大脑结构和功能产生长期影响。
    We previously observed that developmental marginal zinc deficiency affects neurogenesis. Maternal phthalate exposure could disrupt fetal zinc homeostasis by triggering an acute phase response, causing maternal liver zinc retention that limits zinc availability to the fetus. Thus, we currently investigated whether exposure to di-2-ethylhexyl phthalate (DEHP) during gestation in rats alters fetal brain neurogenesis by impairing zinc homeostasis. Dams consumed an adequate (25 μg zinc/g diet) (C) or a marginal zinc deficient (MZD) (10 μg zinc/g diet) diet, without or with DEHP (300 mg/kg BW) (C + DEHP, MZD + DEHP) from embryonic day (E) 0 to E19. To evaluate neurogenesis we measured parameters of neural progenitor cells (NPC) proliferation and differentiation. Maternal exposure to DEHP and/or zinc deficiency lowered fetal brain cortical tissue (CT) zinc concentrations. Transcription factors involved in NPC proliferation (PAX6, SOX2, EMX1), differentiation (TBR2, TBR1) and mature neurons (NeuN) were lower in MZD, MZD + DEHP and C + DEHP than in C E19 brain CT, being the lowest in the MZD + DEHP group. VGLUT1 levels, a marker of glutamatergic neurons, showed a similar pattern. Levels of a marker of GABAergic neurons, GAD65, did not vary among groups. Phosphorylated ERK1/2 levels were reduced by both MZD and DEHP, and particularly in the MZD + DEHP group. MEHP-treated human neuroblastoma IMR-32 cells and E19 brains from DEHP-treated dams showed that the zinc-regulated phosphatase PP2A can be in part responsible for DEHP-mediated ERK1/2 downregulation and impaired neurogenesis. Overall, gestational exposure to DEHP caused secondary zinc deficiency and impaired neurogenesis. These harmful effects could have long-term consequences on the adult offspring brain structure and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    哺乳动物视网膜包含超过40个视网膜神经节细胞(RGC)亚型,基于其独特的形态,功能,和分子概况。其中,固有光敏RGC(ipRGC)是发育过程中从常见视网膜祖细胞池中出现的第一个指定的RGC类型。先前的工作表明,T-box转录因子T-brain2(Tbr2)对于ipRGC的形成和维持至关重要,并且表达Tbr2的RGC在天然ipRGC消融后激活Opn4表达,这表明Tbr2+RGC含有ipRGC的储层。然而,Tbr2+RGC的身份尚未经过全面审查。这里,使用遗传稀疏标记和单细胞记录,我们发现表达Tbr2的视网膜神经元包括RGCs和一部分GABA能置换无长突细胞(dACs).大多数Tbr2RGC本质上是光敏的,在形态上类似于天然ipRGC,具有相同的视网膜突起。Tbr2+RGC还包括一种独特且罕见的表达Pou4f1的OFFRGC亚型。使用功能丧失策略,我们进一步证明了Tbr2对这些RGC和DAC的存活至关重要,以及保持Opn4的表达式。这些数据为研究Tbr2如何调节ipRGC发育和生存奠定了坚实的基础。以及调节固有光敏性的分子机制的表达。
    The mammalian retina contains more than 40 retinal ganglion cell (RGC) subtypes based on their unique morphologies, functions, and molecular profiles. Among them, intrinsically photosensitive RGCs (ipRGCs) are the first specified RGC type emerging from a common retinal progenitor pool during development. Previous work has shown that T-box transcription factor T-brain 2 (Tbr2) is essential for the formation and maintenance of ipRGCs, and that Tbr2-expressing RGCs activate Opn4 expression upon native ipRGC ablation, suggesting that Tbr2+ RGCs contain a reservoir for ipRGCs. However, the identity of Tbr2+ RGCs has not been fully vetted. Here, using genetic sparse labeling and single cell recording, we showed that Tbr2-expressing retinal neurons include RGCs and a subset of GABAergic displaced amacrine cells (dACs). Most Tbr2+ RGCs are intrinsically photosensitive and morphologically resemble native ipRGCs with identical retinofugal projections. Tbr2+ RGCs also include a unique and rare Pou4f1-expressing OFF RGC subtype. Using a loss-of-function strategy, we have further demonstrated that Tbr2 is essential for the survival of these RGCs and dACs, as well as maintaining the expression of Opn4. These data set a strong foundation to study how Tbr2 regulates ipRGC development and survival, as well as the expression of molecular machinery regulating intrinsic photosensitivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Intermediate progenitor cells (IPCs) are neocortical neuronal precursors. Although IPCs play crucial roles in corticogenesis, their molecular features remain largely unknown. In this study, we aimed to characterize the molecular profile of IPCs. We isolated TBR2-positive (+) IPCs and TBR2-negative (-) cell populations in the developing mouse cortex. Comparative genome-wide gene expression analysis of TBR2+ IPCs versus TBR2- cells revealed differences in key factors involved in chromatid segregation, cell-cycle regulation, transcriptional regulation, and cell signaling. Notably, mutation of many IPC genes in human has led to intellectual disability and caused a wide range of cortical malformations, including microcephaly and agenesis of corpus callosum. Loss-of-function experiments in cortex-specific mutants of Esco2, one of the novel IPC genes, demonstrate its critical role in IPC maintenance, and substantiate the identification of a central genetic determinant of IPC biogenesis. Our data provide novel molecular characteristics of IPCs in the developing mouse cortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    CHD8单倍体功能不全导致自闭症和大头畸形,在人群中具有高外显率。Chd8杂合小鼠表现出相对微妙的大脑过度生长,并且在胚胎新皮层中几乎没有基因表达变化。这项研究的目的是产生新的,亚单倍体不足的Chd8小鼠模型使我们能够识别和研究CHD8在胚胎皮质发育过程中的功能。
    为了检查某些表型可能仅在小鼠的亚杂合Chd8水平出现的可能性,我们创建了一系列Chd8缺陷小鼠的等位基因,以将CHD8蛋白水平降低到约35%(轻度次形态),野生型水平的10%(重度下形态)和0%(神经特异性条件性敲除)。我们使用RNA测序来比较转录失调,结构MRI和脑重量,以研究对大脑大小的影响,和细胞增殖,免疫染色测定中的分化和凋亡标记,以量化神经祖细胞命运的变化。
    轻度的Chd8副形态在出生后表现出显著的致死率,存活的动物比杂合子表现出更明显的脑增生。超过2000个基因在轻度副形态中失调,包括自闭症相关的神经发育和细胞周期基因。我们确定非心室区TBR2中间祖细胞的增殖增加是这些突变体中脑增生的一个潜在原因。严重的Chd8低态表现出甚至更大的转录失调,包括p53通路上调的证据。与轻度的次生相比较,这些小鼠在胚胎大脑皮层显示出减小的大脑大小和增加的细胞凋亡。纯合子,早期神经元祖细胞中Chd8的条件性缺失导致明显的脑发育不全,部分由胚胎新皮质中p53靶基因抑制和凋亡引起。局限性我们的发现确定了自闭症相关因子CHD8在控制小鼠新皮质中中间祖细胞增殖中的重要作用。我们认为CHD8在人脑发育中具有类似的功能,但是需要对人类细胞的研究来证实这一点。因为我们许多CHD8功能降低的小鼠突变体在出生后不久死亡,尚不能完全确定CHD8功能降低在多大程度上导致小鼠自闭症相关行为.
    一起,这些发现表明,CHD8在p53通路抑制中的剂量敏感功能,胚胎新皮层中神经发育基因的表达和神经祖细胞的命运。我们得出的结论是,大脑发育对CHD8表达降低非常敏感,并且不同祖细胞群和细胞过程对CHD8剂量的不同敏感性会导致对基因转录和大脑生长的非线性影响。ShaunHurley,ConorMohan和PhilippSuetterlin对这项工作做出了同样的贡献。
    CHD8 haploinsufficiency causes autism and macrocephaly with high penetrance in the human population. Chd8 heterozygous mice exhibit relatively subtle brain overgrowth and little gene expression changes in the embryonic neocortex. The purpose of this study was to generate new, sub-haploinsufficient Chd8 mouse models to allow us to identify and study the functions of CHD8 during embryonic cortical development.
    To examine the possibility that certain phenotypes may only appear at sub-heterozygous Chd8 levels in the mouse, we created an allelic series of Chd8-deficient mice to reduce CHD8 protein levels to approximately 35% (mild hypomorph), 10% (severe hypomorph) and 0% (neural-specific conditional knockout) of wildtype levels. We used RNA sequencing to compare transcriptional dysregulation, structural MRI and brain weight to investigate effects on brain size, and cell proliferation, differentiation and apoptosis markers in immunostaining assays to quantify changes in neural progenitor fate.
    Mild Chd8 hypomorphs displayed significant postnatal lethality, with surviving animals exhibiting more pronounced brain hyperplasia than heterozygotes. Over 2000 genes were dysregulated in mild hypomorphs, including autism-associated neurodevelopmental and cell cycle genes. We identify increased proliferation of non-ventricular zone TBR2+ intermediate progenitors as one potential cause of brain hyperplasia in these mutants. Severe Chd8 hypomorphs displayed even greater transcriptional dysregulation, including evidence for p53 pathway upregulation. In contrast to mild hypomorphs, these mice displayed reduced brain size and increased apoptosis in the embryonic neocortex. Homozygous, conditional deletion of Chd8 in early neuronal progenitors resulted in pronounced brain hypoplasia, partly caused by p53 target gene derepression and apoptosis in the embryonic neocortex. Limitations Our findings identify an important role for the autism-associated factor CHD8 in controlling the proliferation of intermediate progenitors in the mouse neocortex. We propose that CHD8 has a similar function in human brain development, but studies on human cells are required to confirm this. Because many of our mouse mutants with reduced CHD8 function die shortly after birth, it is not possible to fully determine to what extent reduced CHD8 function results in autism-associated behaviours in mice.
    Together, these findings identify important, dosage-sensitive functions for CHD8 in p53 pathway repression, neurodevelopmental gene expression and neural progenitor fate in the embryonic neocortex. We conclude that brain development is acutely sensitive to reduced CHD8 expression and that the varying sensitivities of different progenitor populations and cellular processes to CHD8 dosage result in non-linear effects on gene transcription and brain growth. Shaun Hurley, Conor Mohan and Philipp Suetterlin have contributed equally to this work.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    先前的研究表明,转录因子Tbr2在发育和成年期的小脑单极刷细胞(UBC)中的特异性表达。为了进一步研究UBC和Tbr2在其发育中的作用,我们检查了转基因小鼠品系(报道分子和谱系示踪剂)中的UBC形态,并且还检查了Tbr2缺乏在Tbr2(MGI:Eomes)条件性敲除(cKO)小鼠中的作用。在Tbr2报告者和谱系示踪剂小脑中,UBC表现出比以前报道的更复杂的形态,包括多个树突,分叉的树突,和多达四个树枝状刷子。我们建议“树突状刷细胞”(DBC)可能是更合适的命名法。在Tbr2cKO小脑,成熟UBC完全不存在。在Tbr2cKO小鼠中,UBC前体从菱形唇向小脑皮质和其他核的迁移受到损害。我们的结果表明,UBC的迁移和分化对Tbr2缺乏敏感。为了调查UBC在人类中的发育是否与啮齿动物相似,我们研究了Tbr2在妊娠中期人类小脑中的表达。值得注意的是,Tbr2UBC前体在人类中沿与啮齿动物小脑相同的途径迁移,并分散以产生离开菱形唇的UBC的相同“喷泉状”外观特征。
    Previous studies demonstrated specific expression of transcription factor Tbr2 in unipolar brush cells (UBCs) of the cerebellum during development and adulthood. To further study UBCs and the role of Tbr2 in their development we examined UBC morphology in transgenic mouse lines (reporter and lineage tracer) and also examined the effects of Tbr2 deficiency in Tbr2 (MGI: Eomes) conditional knock-out (cKO) mice. In Tbr2 reporter and lineage tracer cerebellum, UBCs exhibited more complex morphologies than previously reported including multiple dendrites, bifurcating dendrites, and up to four dendritic brushes. We propose that \"dendritic brush cells\" (DBCs) may be a more apt nomenclature. In Tbr2 cKO cerebellum, mature UBCs were completely absent. Migration of UBC precursors from rhombic lip to cerebellar cortex and other nuclei was impaired in Tbr2 cKO mice. Our results indicate that UBC migration and differentiation are sensitive to Tbr2 deficiency. To investigate whether UBCs develop similarly in humans as in rodents, we studied Tbr2 expression in mid-gestational human cerebellum. Remarkably, Tbr2+ UBC precursors migrate along the same pathways in humans as in rodent cerebellum and disperse to create the same \"fountain-like\" appearance characteristic of UBCs exiting the rhombic lip.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号