T2SS-2

T2SS - 2
  • 文章类型: Journal Article
    志贺洛类假单胞菌,革兰氏阴性杆菌,是肠杆菌科的唯一成员,能够产生极性和外侧鞭毛并引起人类胃肠道和肠外疾病。志贺氏菌的鞭毛转录层次目前未知。在这项研究中,我们确认了FlaK,FlaM,Flia,FliAL是志贺氏菌中负责极性和侧向鞭毛调节的四种调节剂。为了确定志贺氏菌的鞭毛转录层次,WT和ΔflaK的转录组,ΔflaM,ΔFIA,在这项研究中,进行了ΔfliAL的比较。定量实时聚合酶链反应(qRT-PCR)和发光筛选试验用于验证RNA-seq结果,电泳迁移率变化分析(EMSA)结果表明,FlaK可以直接与fliK的启动子结合,FLIE,flha,chey,虽然FlaM蛋白可以直接与flgO的启动子结合,flgT,和flgA。同时,我们还观察到VI型分泌系统(T6SS)和II型分泌系统2(T2SS-2)基因在转录组谱中下调,杀伤试验显示对ΔflaK的杀伤能力较低,ΔflaM,ΔFIA,和ΔFLAL与WT相比,表明鞭毛等级系统和细菌分泌系统之间存在串扰。入侵试验还表明,ΔflaK,ΔflaM,ΔFIA,和ΔfliAL在感染Caco-2细胞方面不如WT有效。此外,我们还发现鞭毛调节因子的缺失导致志贺氏菌的一些生理代谢基因的差异表达。总的来说,这项研究旨在揭示控制志贺氏菌鞭毛基因表达的转录层次,以及运动性之间的串扰,毒力,以及生理和代谢活动,为将来研究志贺洛芝在自然环境中的协调生存和感染宿主的机制奠定基础。
    Plesiomonas shigelloides, a Gram-negative bacillus, is the only member of the Enterobacteriaceae family able to produce polar and lateral flagella and cause gastrointestinal and extraintestinal illnesses in humans. The flagellar transcriptional hierarchy of P. shigelloides is currently unknown. In this study, we identified FlaK, FlaM, FliA, and FliAL as the four regulators responsible for polar and lateral flagellar regulation in P. shigelloides. To determine the flagellar transcription hierarchy of P. shigelloides, the transcriptomes of the WT and ΔflaK, ΔflaM, ΔfliA, and ΔfliAL were carried out for comparison in this study. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and luminescence screening assays were used to validate the RNA-seq results, and the Electrophoretic Mobility Shift Assay (EMSA) results revealed that FlaK can directly bind to the promoters of fliK, fliE, flhA, and cheY, while the FlaM protein can bind directly to the promoters of flgO, flgT, and flgA. Meanwhile, we also observed type VI secretion system (T6SS) and type II secretion system 2 (T2SS-2) genes downregulated in the transcriptome profiles, and the killing assay revealed lower killing abilities for ΔflaK, ΔflaM, ΔfliA, and ΔfliAL compared to the WT, indicating that there was a cross-talk between the flagellar hierarchy system and bacterial secretion system. Invasion assays also showed that ΔflaK, ΔflaM, ΔfliA, and ΔfliAL were less effective in infecting Caco-2 cells than the WT. Additionally, we also found that the loss of flagellar regulators causes the differential expression of some of the physiological metabolic genes of P. shigelloides. Overall, this study aims to reveal the transcriptional hierarchy that controls flagellar gene expression in P. shigelloides, as well as the cross-talk between motility, virulence, and physiological and metabolic activity, laying the groundwork for future research into P. shigelloides\' coordinated survival in the natural environment and the mechanisms that infect the host.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:RpoN,也被称为σ54,最早在大肠杆菌中报道,是RNA聚合酶的一个亚基,通过鉴定特定的启动子元件严格控制不同基因的表达。RpoN在碳和氮代谢中具有重要的调节功能,参与鞭毛合成的调节,细菌运动性和毒力。然而,对RpoN在志贺菌中的作用知之甚少。
    结果:为了确定由RpoN控制的途径,进行WT和rpoN缺失株的RNA测序(RNA-Seq)用于比较。RNA-seq结果表明,RpoN调节约13.2%的志贺氏菌转录组,涉及氨基酸运输和代谢,甘油磷脂代谢,泛酸和CoA生物合成,核糖体生物合成,鞭毛组装和细菌分泌系统。此外,我们使用定量实时逆转录PCR验证了RNA-seq的结果,这表明rpoN的缺失导致志贺氏菌中一半以上的极性和侧向鞭毛基因下调,ΔrpoN突变体也不运动,缺乏鞭毛。在本研究中,与WT相比,ΔrpoN突变体杀死大肠杆菌MG1655的能力降低了54.6%,这与RNA-seq的结果一致,这表明II型分泌系统(T2SS-2)基因和VI型分泌系统(T6SS)基因被抑制。相比之下,在ΔrpoN突变体转录组中,III型分泌系统基因的表达在很大程度上没有变化,ΔrpoN突变体感染Caco-2细胞的能力与WT相比也没有显着差异。
    结论:我们表明RpoN是运动所必需的,并有助于志贺氏菌的杀伤能力,并积极调节T6SS和T2SS-2基因。
    RpoN, also known as σ54, first reported in Escherichia coli, is a subunit of RNA polymerase that strictly controls the expression of different genes by identifying specific promoter elements. RpoN has an important regulatory function in carbon and nitrogen metabolism and participates in the regulation of flagellar synthesis, bacterial motility and virulence. However, little is known about the effect of RpoN in Plesiomonas shigelloides.
    To identify pathways controlled by RpoN, RNA sequencing (RNA-Seq) of the WT and the rpoN deletion strain was carried out for comparison. The RNA-seq results showed that RpoN regulates ~ 13.2% of the P. shigelloides transcriptome, involves amino acid transport and metabolism, glycerophospholipid metabolism, pantothenate and CoA biosynthesis, ribosome biosynthesis, flagellar assembly and bacterial secretion system. Furthermore, we verified the results of RNA-seq using quantitative real-time reverse transcription PCR, which indicated that the absence of rpoN caused downregulation of more than half of the polar and lateral flagella genes in P. shigelloides, and the ΔrpoN mutant was also non-motile and lacked flagella. In the present study, the ability of the ΔrpoN mutant to kill E. coli MG1655 was reduced by 54.6% compared with that of the WT, which was consistent with results in RNA-seq, which showed that the type II secretion system (T2SS-2) genes and the type VI secretion system (T6SS) genes were repressed. By contrast, the expression of type III secretion system genes was largely unchanged in the ΔrpoN mutant transcriptome and the ability of the ΔrpoN mutant to infect Caco-2 cells was also not significantly different compared with the WT.
    We showed that RpoN is required for the motility and contributes to the killing ability of P. shigelloides and positively regulates the T6SS and T2SS-2 genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号