Syngas

合成气
  • 文章类型: Journal Article
    甲烷的干重整(DRM)被认为是高效温室气体管理的最有前途的技术之一,因为通过这种反应,可以减少CO2和CH4以获得合成气,H2和CO的混合物,具有适合费托生产长链烃的比例。另外两个主要过程可以从CH4产生H2,即甲烷蒸汽重整(SRM)和甲烷部分氧化(POM),即使,没有二氧化碳作为试剂,他们被认为是较少的绿色。最近,科学家面临的挑战是克服DRM反应的许多缺点,即,使用贵金属基催化剂,该过程的高温,催化剂表面上的金属颗粒烧结和碳沉积。为了克服这些问题,一种提出的解决方案是实施甲烷的光热干重整,其中用光照射与加热结合使用以提高方法的效率。在本文中,我们回顾了几个小组的工作,旨在研究光辐射在DRM中的关键作用。重点还放在催化剂设计和将DRM带到工业规模所需的进展上。
    Dry reforming of methane (DRM) is considered one of the most promising technologies for efficient greenhouse gas management thanks to the fact that through this reaction, it is possible to reduce CO2 and CH4 to obtain syngas, a mixture of H2 and CO, with a suitable ratio for the Fischer-Tropsch production of long-chain hydrocarbons. Two other main processes can yield H2 from CH4, i.e., Steam Reforming of Methane (SRM) and Partial Oxidation of Methane (POM), even though, not having CO2 as a reagent, they are considered less green. Recently, scientists\' challenge is to overcome the many drawbacks of DRM reactions, i.e., the use of precious metal-based catalysts, the high temperatures of the process, metal particle sintering and carbon deposition on the catalysts\' surfaces. To overcome these issues, one proposed solution is to implement photo-thermal dry reforming of methane in which irradiation with light is used in combination with heating to improve the efficiency of the process. In this paper, we review the work of several groups aiming to investigate the pivotal promoting role of light radiation in DRM. Focus is also placed on the catalysts\' design and the progress needed for bringing DRM to an industrial scale.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过甲烷干重整(DRM)和催化甲烷分解(CDM)的集成过程直接转化沼气作为同时生产合成气和碳纳米管(CNT)的有前途的绿色催化过程受到了极大的关注。在这项工作中,在纯沼气工业进料条件下,在固定床反应器中,研究了NiMo/MgO催化剂上700-1100°C的反应温度和沼气CH4/CO2比的影响。在700°C下的反应由于在催化剂表面上形成无定形碳而在3小时内显示出快速的催化剂失活。在800-900°C的较高温度下,该催化剂可以在生产合成气和碳纳米管时表现出优异的性能。有趣的是,碳纳米管的最小直径和最高石墨化是在1000°C的高温下获得的,当温度升高到1100°C时,会导致Ni颗粒的团聚,导致更大尺寸的CNT。反应温度在800°C时表现出最佳,提供最高的碳纳米管产量和高石墨化,合成气纯度高达90.04%,H2/CO比为1.1,沼气转化率高(XCH4=86.44%,XCO2=95.62%),在3小时内性能稳定。典型的组成沼气(CH4/CO2=1.5)有利于集成过程,而富含CO2的沼气引起了较大晶粒尺寸的催化剂并形成了氧化钼纳米棒(MoO3)。NiMo/MgO催化剂在800°C下的长期稳定性显示出稳定的趋势(>20h)。实验结果证实,在最佳条件下,NiMo/MgO可以表现出优异的活性和高稳定性,允许该过程在实际应用中更有前途。
    Direct conversion of biogas via the integrative process of dry reforming of methane (DRM) and catalytic methane decomposition (CDM) has received a great attention as a promising green catalytic process for simultaneous production of syngas and carbon nanotubes (CNTs). In this work, the effects of reaction temperature of 700-1100 °C and CH4/CO2 ratio of biogas were investigated over NiMo/MgO catalyst in a fixed bed reactor under industrial feed condition of pure biogas. The reaction at 700 °C showed a rapid catalyst deactivation within 3 h due to the formation of amorphous carbon on catalyst surface. At higher temperature of 800-900 °C, the catalyst can perform the excellent performance for producing syngas and carbon nanotubes. Interestingly, the smallest diameter and the highest graphitization of CNTs was obtained at high temperature of 1000 °C, while elevating temperature to 1100 °C leads to agglomeration of Ni particles, resulting in a larger size of CNTs. The reaction temperature exhibits optimum at 800 °C, providing the highest CNTs yield with high graphitization, high syngas purity up to 90.04% with H2/CO ratio of 1.1, and high biogas conversion (XCH4 = 86.44%, XCO2 = 95.62%) with stable performance over 3 h. The typical composition biogas (CH4/CO2 = 1.5) is favorable for the integration process, while the CO2 rich biogas caused a larger grain size of catalyst and a formation of molybdenum oxide nanorods (MoO3). The long-term stability of NiMo/MgO catalyst at 800 °C showed a stable trend (> 20 h). The experimental findings confirm that NiMo/MgO can perform the excellent activity and high stability at the optimum condition, allowing the process to be more promising for practical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    等离子体气化熔化(PGM)提供低热值的有毒医疗废物的可靠处置,能够将废物转化为能源。这项研究调查了使用空气介质处理化学制药医疗废物(CPMW)的等离子体气化实验的性能。在三个反应器温度(1000、1400和1800°C)下对气化特性进行了比较分析。此外,建立了热力学平衡模型来评估合成气产量等性能特征,热值高,在1000-1800°C的气化温度范围内和冷气效率。实验和计算结果的比较显示出良好的一致性。结果表明,通过提高等离子气化炉的温度,使在1800°C,H2、CO、获得更高的热值(HHV)为41%,37%,和10MJ/Nm3。所获得的合成气是具有低含硫和含氮的清洁燃料。实验结果提供了对等离子体反应器中CPMW气化的广泛理解,并考虑了氢气和能源生产的可能性。
    Plasma gasification melting (PGM) provides reliable disposal of toxic medical waste with a low heating value, which is capable of converting waste into energy. This study investigates the performance of experiments on plasma gasification for the treatment of chemical-pharmaceutical medical waste (CPMW) with an air medium. A comparative analysis is performed for gasification characteristics at three reactor temperatures (1000, 1400, and 1800 °C). Moreover, a thermodynamic equilibrium model is developed to assess performance features such as syngas yield, high heating value, and cold gas efficiency in the gasification temperature range of 1000-1800 °C. A comparison of the experiment and computational outcomes shows a good agreement. The results show that the quality of syngas and heating value is improved by increasing the temperature of the plasma gasifier so that at 1800 °C, H2, CO, and higher heating value (HHV) are obtained as 41 %, 37 %, and 10 MJ/Nm3, respectively. The obtained syngas is a clean fuel with low sulfur-containing and nitrogen-containing. The experimental results provide an extensive comprehension of CPMW gasification in a plasma reactor and consider a possibility for hydrogen and energy production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用Fe基氧载体对甲烷(CLRM)进行化学链重整被广泛认为是一种环境友好且具有成本效益的合成气生产方法。然而,在高于900°C的高温下烧结引起的氧载体失活是限制CLRM发展的长期问题。这里,为了降低反应温度而不损害化学循环CH4转化效率,根据LeChatelier原理,通过控制反应压力使CH4部分氧化的平衡向前进方向移动,提出了一种新的CLRM操作方案。热力学模拟结果表明,在固定的反应温度下,压力的降低导致CH4转化率的增加,H2和CO选择性,以及所有研究的氧载体的碳沉积速率。Fe3O4、Fe2O3和MgFe2O4组成的负压CLRM可以在良好的CLRM性能的前提下将反应温度降低到700℃以下。在全面考虑CLRM性能的基础上,能源消耗,和CH4要求,NiFe2O4是最适用于负压CLRM的Fe基OCs。这项研究提供了一种新的策略,从反应热力学的角度来解决烧结导致的材料在化学循环中的失活。
    Chemical looping reforming of methane (CLRM) with Fe-based oxygen carriers is widely acknowledged as an environmentally friendly and cost-effective approach for syngas production, however, sintering-caused deactivate of oxygen carriers at elevated temperatures of above 900 °C is a longstanding issue restricting the development of CLRM. Here, in order to reduce the reaction temperature without compromising the chemical-looping CH4 conversion efficiency, we proposed a novel operation scheme of CLRM by manipulating the reaction pressure to shift the equilibrium of CH4 partial oxidation towards the forward direction based on the Le Chatelier\'s principle. The results from thermodynamic simulations showed that, at a fixed reaction temperature, the reduction in pressure led to the increase in CH4 conversion, H2 and CO selectivity, as well as carbon deposition rate of all investigated oxygen carriers. The pressure-negative CLRM with Fe3O4, Fe2O3 and MgFe2O4 could reduce the reaction temperature to below 700 °C on the premise of a satisfactory CLRM performance. In a comprehensive consideration of the CLRM performance, energy consumption, and CH4 requirement, NiFe2O4 was the Fe-based OCs best available for pressure-negative CLRM, especially for an excellent syngas yield of 23.08 mmol/gOC. This study offered a new strategy to address sintering-caused deactivation of materials in chemical looping from the reaction thermodynamics point of view.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物固体是废水处理的副产品,需要进一步处理。传统的生物固体处理和处置技术在当前苛刻的标准下效率低下。热化学转化技术已用于生物固体管理,由于合成气的生产,气化是最有前途的,可用于通过重整反应生产能量或高附加值物质的气态产物。气化是一个复杂的热化学过程;其性能和产量受到原料类型的强烈影响,还取决于系统配置和工艺条件。气化通常在700至1,200°C之间的温度下进行,但它也可能发生在较低的温度(高于375°C:超临界水气化)或较高的温度(高于3,000°C:等离子体气化)。本综述简要介绍了生物固体管理实践,重点是气化过程和合成气处理,而生物固体气化的最新技术是批判性地提出和讨论。许多类型的气化炉(更常见的是流化床,还有固定床,回转窑,downdraft,等。),气化剂,和操作条件已用于生物固体气化。关于生物固体气化的研究的主要结果是:(i)温度和当量比的增加提高了气化性能,导致高合成气产量和质量,冷气效率高,和低焦油和焦炭产量;(ii)所获得的合成气的热值随着当量比的增加而趋于降低;(iii)催化剂的使用已被证明可以大大提高气化性能,与非催化气化相比。技术参数的适当选择决定了生物固体气化的有效性,这被认为是一种从生物固体中回收能量的有前途的技术,从而提高污水处理水平,改善环境质量。
    Biosolids is a by-product of wastewater treatment that needs to be further processed. Traditional biosolids treatment and disposal technologies are inefficient under the current demanding standards. Thermochemical conversion technologies have been employed for biosolids management, with gasification being the most promising due to the production of syngas, a gaseous product that may be used for the production of energy or high-added-value substances through reforming reactions. Gasification is a complex thermochemical process; its performance and yield are strongly affected by the type of feedstock, but also by the system configuration and process conditions. Gasification usually takes place at temperatures between 700 and 1,200 °C, but it may also occur at lower temperatures (above 375 °C: supercritical water gasification) or at higher temperatures (above 3,000 °C: plasma gasification). The present review briefly presents the biosolids management practices, focusing on the gasification process and syngas treatment, while the state of the art in biosolids gasification is critically presented and discussed. A number of types of gasifiers (more frequently fluidized bed, but also fixed bed, rotary kiln, downdraft, etc.), gasifying agents, and operational conditions have been used for biosolids gasification. The key results of the study regarding biosolids gasification are: (i) the increase of temperature and equivalence ratio enhances the gasification performance, resulting in high syngas yield and quality, high cold gas efficiency, and low tar and char production; (ii) the calorific value of the obtained syngas tends to decrease with the increase of equivalence ratio; and (iii) the use of catalysts has been proven to substantially improve the gasification performance, compared to non-catalytic gasification. The proper selection of technical parameters determines the effectiveness of biosolids gasification, which is considered as a promising technology for the energy recovery from biosolids, so to upgrade wastewater treatment and improve environmental quality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    探索低成本的可见光光催化剂用于CO2还原以生产比例可调的合成气,对于满足绿色化工的需求具有重要意义。通过使用简单的两步煅烧方法构建了S-方案CeO2/g-C3N4(CeO2/CN)异质结。在光催化CO2还原过程中,CeO2/CN异质结能表现出优越的光催化性能,并且在合成气中获得的CO/H2比率可以从1:0.16调节至1:3.02。此外,最佳CeO2/CN复合材料的CO和H2生成速率可分别达到1169.56和429.12μmolg-1h-1。这种优异的光催化性能归因于CeO2和CN之间独特的S-Scheme光生电荷转移机制,这有利于快速的电荷分离和迁移,同时保留了两种半导体优异的氧化还原能力。特别是,可变价态Ce3+/Ce4+可以充当CeO2和CN之间的电子介体,能促进电子转移,提高催化性能。该工作有望为合理构建高效S-Scheme异质结光催化剂提供新的有益参考,提高光催化还原CO2的效率,促进光催化还原CO2转化为有用燃料。
    Exploring low-cost visible light photocatalysts for CO2 reduction to produce proportionally adjustable syngas is of great significance for meeting the needs of green chemical industry. A S-Scheme CeO2/g-C3N4 (CeO2/CN) heterojunction was constructed by using a simple two-step calcination method. During the photocatalytic CO2 reduction process, the CeO2/CN heterojunction can present a superior photocatalytic performance, and the obtained CO/H2 ratios in syngas can be regulated from 1 : 0.16 to 1 : 3.02. In addition, the CO and H2 production rate of the optimal CeO2/CN composite can reach 1169.56 and 429.12 μmol g-1 h-1, respectively. This superior photocatalytic performance is attributed to the unique S-Scheme photogenerated charge transfer mechanism between CeO2 and CN, which facilitates rapid charge separation and migration, while retaining the excellent redox capacity of both semiconductors. Particularly, the variable valence Ce3+/Ce4+ can act as electron mediator between CeO2 and CN, which can promote electron transfer and improve the catalytic performance. This work is expected to provide a new useful reference for the rational construction of high efficiency S-Scheme heterojunction photocatalyst, and improve the efficiency of photocatalytic reduction of CO2, promoting the photocatalytic reduction of CO2 into useful fuels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    产生合成气的电化学二氧化碳还原反应(eCO2RR)是CO2净还原的有吸引力的策略。然而,它的法拉第效率(FE)较差,选择性,和难以调制的氢/一氧化碳(H2/CO)比。为了解决这些问题,通过一步热解在氮掺杂的碳基体(MgNiX-NCDAC)上制备了一系列具有不同Ni含量的镁-镍(Mg-Ni)双原子催化剂。MgNi5-NC电催化剂在-0.6至-1.0V的电势范围内产生0.51-0.79H2/CO比可逆氢电极(RHE)和总FE达到100%,具有良好的稳定性。虽然在相同的过电位范围内,MgNi3-NC电催化剂实现了更宽的H2/CO范围(0.95-4.34),适用于典型的下游热化学反应。Ni物种的引入加速了CO的生成,然而,与基于Mg的单原子电催化剂相比,对H2产量的影响要小得多。根据实验结果和密度泛函理论(DFT)计算,Mg和Ni之间的协同效应达到了满意的结果,而不是各自履行自己的职责来选择性生产H2和CO,分别。这项工作介绍了在主族金属上开发原子催化剂以实现更可控的CO2RR的可行方法。
    Electrochemical carbon dioxide reduction reaction (eCO2RR) to generate syngas is an appealing strategy for CO2 net reduction. However, it suffers from the inferior faradaic efficiency (FE), selectivity, and difficult modulation of hydrogen/carbon monoxide (H2/CO) ratio. To address these issues, a series of magnesium-nickel (Mg-Ni) dual atomic catalysts with different Ni contents are fabricated on the nitrogen-doped carbon matrix (MgNiX-NC DACs) by one-step pyrolysis. MgNi5-NC electrocatalyst generates 0.51-0.79 H2/CO ratios in a potential range of -0.6 to -1.0 V vs. reversible hydrogen electrode (RHE) and the total FE reaches 100 % with good stability. While a wider range of H2/CO (0.95-4.34) is achieved for MgNi3-NC electrocatalyst in the same overpotential range, which is suitable for typical downstream thermochemical reactions. Introduction of Ni species accelerates the generation of CO, however, there is much less influence on the H2 production as compared with Mg-based single atomic electrocatalyst. According to the experimental results and density functional theory (DFT) calculations, the synergistic effect between Mg and Ni achieves the satisfied results rather than each one fulfill its own duty for selective producing H2 and CO, respectively. This work introduces a feasible approach to develop atomic catalysts on main group metal for more controllable CO2RR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    共价有机骨架(COF)在光催化CO2还原方面引起了越来越多的兴趣,但是由于活性位点不足和快速电荷重组,实现高转化效率仍然是一个挑战。合理优化COF的电子结构以精确调节活性位点的局部电荷是提高催化性能的关键。在这里,通过分子工程策略,使用具有不同电子部分的三核铜基亚胺-COF设计了由亚胺-N基序配位的插层单个Co位点。已经证实,这些异金属骨架的电荷传递性质和局部电荷分布可以受到电子结构的深刻影响。在这些具有混合态铜簇的特征结构中,通过改变各种联吡啶,Co/Cu3-TPA-COF具有出色的光催化CO2还原活性和可调的合成气(CO/H2)比。实验和理论结果表明,在donor1-受体-donor2结构上的中间层Co-亚胺N基序促进了高度分离的电子-空穴态的形成,这有效地诱导了从双电子供体到Co中心的定向电子转移,实现增强的CO2活化和还原。这项工作为设计用于光催化CO2还原的高性能COF基催化剂开辟了道路。
    Covalent organic framework (COF) has attracted increasing interest in photocatalytic CO2 reduction, but it remains a challenge to achieve high conversion efficiency owing to the insufficient active site and fast charge recombination. Rationally optimizing the electronic structures of COF to regulate the local charge of active sites precisely is the key point to improving catalytic performance. Herein, intercalated single Co sites coordinated by imine-N motifs have been designed by using trinuclear copper-based imine-COFs with distinct electronic moieties via a molecular engineering strategy. It is confirmed that the charge delivery property and local charge distribution of these heterometallic frameworks can be profoundly influenced by electronic structures. Among these featured structures with mixed-state copper clusters, Co/Cu3-TPA-COF stands out for an exceptional photocatalytic CO2 reduction activity and tunable syngas (CO/H2) ratio by changing various bipyridines. Experimental and theoretical results indicate that interlayer Co-imine N motifs on the donor1-acceptor-donor2 structures facilitate the formation of a highly separated electron-hole state, which effectively induces the oriented electron transfer from dual electron donors to Co centers, achieving an enhanced CO2 activation and reduction. This work opens up an avenue for the design of high-performance COF-based catalysts for photocatalytic CO2 reduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本文比较了,通过生命周期评估(LCA),从废水中培养的微藻的两条水热路线生产航空生物燃料。比较了水热液化(HTL)和气化后的费托合成(GFT)。两条路线都包括生物质生产,生物燃料升级的加氢处理,和产品分馏。从文献中获得的次要数据用于摇篮到门的LCA。在评估的18个影响类别中,G+FT的影响高于HTL,与人类致癌毒性对环境施加最有害的压力。催化剂是造成最不利排放的输入。用于生物油分离的溶剂在影响方面也很突出。在HTL中,全球变暖的排放量为-51.6g二氧化碳当量/MJ,在G+FT中,它们是250克CO2当量/MJ。在端点级别,HTL为人类健康和生态系统带来了好处,虽然G+FT在这两个类别中造成了环境破坏,以及资源类别。在改进方案中,除了考虑固体,水性,和气态产物作为副产物,而不仅仅是废物/排放物,应用了20%的催化剂消耗减少和90%的回收率。因此,在HTL中,避免了39.47千克二氧化碳当量,与基本情景中35.44千克二氧化碳当量相比。在G+FT中,排放量从147.55千克二氧化碳当量减少到8.60千克二氧化碳当量的捕获。
    The present paper compared, through life cycle assessment (LCA), the production of aviation biofuel from two hydrothermal routes of microalgae cultivated in wastewater. Hydrothermal liquefaction (HTL) and gasification followed by Fischer-Tropsch synthesis (G + FT) were compared. Both routes included biomass production, hydrotreatment for biofuel upgrading, and product fractionation. Secondary data obtained from the literature were used for the cradle-to-gate LCA. G + FT had a higher impact than HTL in the 18 impact categories assessed, with human carcinogenic toxicity exerting the most harmful pressure on the environment. The catalysts were the inputs that caused the most adverse emissions. The solvent used for bio-oil separation also stood out in terms of impacts. In HTL, emissions for global warming were -51.6 g CO2 eq/MJ, while in G + FT, they were 250 g CO2 eq/MJ. At the Endpoint level, HTL resulted in benefits to human health and ecosystems, while G + FT caused environmental damage in these two categories, as well as in the resources category. In the improvement scenarios, besides considering solid, aqueous, and gaseous products as co-products rather than just as waste/emissions, a 20% reduction in catalyst consumption and 90% recovery were applied. Thus, in HTL, 39.47 kg CO2 eq was avoided, compared to 35.44 kg CO2 eq in the base scenario. In G + FT, emissions decreased from 147.55 kg CO2 eq to the capture of 8.60 kg CO2 eq.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    虽然由CO2和H2O温和生产合成气(H2和CO的混合物)是煤基化学工程技术的有希望的替代方案,二氧化碳分子的惰性性质,H2O和不令人满意的催化剂的不利的分裂途径导致高CO2转化效率与所产生的合成气在宽范围内具有可控的H2/CO比率的难以整合的挑战。在这里,我们报告了一种有效的等离子体驱动催化系统,用于在具有丰富的受限H2O分子的多孔金属有机框架(MOF)催化剂上温和生产纯合成气,其中它们的合成气生产能力由原位演化的配体缺陷和CO2分子的等离子体激活的中间物质调节。特别是,Cu基催化剂体系实现了61.9%的CO2转化率,并生产了具有0.05:1-4.3:1宽H2/CO比的纯合成气。正如实验和理论计算结果所揭示的那样,含CuMOF催化剂的原位动态结构演变有利于生成具有优化的几何和电子特性的配位不饱和金属活性位点,反应物的吸附,以及合成气的降低的能量壁垒-生产潜力-将CO2氢化为*COOH和将H2O质子化为*H的决定步骤。
    While the mild production of syngas (a mixture of H2 and CO) from CO2 and H2O is a promising alternative to the coal-based chemical engineering technologies, the inert nature of CO2 molecules, unfavorable splitting pathways of H2O and unsatisfactory catalysts lead to the challenge in the difficult integration of high CO2 conversion efficiency with produced syngas with controllable H2/CO ratios in a wide range. Herein, we report an efficient plasma-driven catalytic system for mild production of pure syngas over porous metal-organic framework (MOF) catalysts with rich confined H2O molecules, where their syngas production capacity is regulated by the in situ evolved ligand defects and the plasma-activated intermediate species of CO2 molecules. Specially, the Cu-based catalyst system achieves 61.9 % of CO2 conversion and the production of pure syngas with wide H2/CO ratios of 0.05 : 1-4.3 : 1. As revealed by the experimental and theoretical calculation results, the in situ dynamic structure evolution of Cu-containing MOF catalysts favors the generation of coordinatively unsaturated metal active sites with optimized geometric and electronic characteristics, the adsorption of reactants, and the reduced energy barriers of syngas-production potential-determining steps of the hydrogenation of CO2 to *COOH and the protonation of H2O to *H.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号