Synapse

突触
  • 文章类型: Journal Article
    CD2相关蛋白(CD2AP)是阿尔茨海默病的候选易感基因,但它在哺乳动物中枢神经系统中的作用还不清楚。我们发现CD2AP蛋白在成年小鼠脑中广泛表达,包括皮质和海马神经元,在突触前的末端检测到。Cd2ap的缺失改变了树突状分支和脊柱密度,泛素-蛋白酶体系统活性受损。此外,在携带一个或两个种系Cd2ap无效等位基因拷贝的小鼠中,我们注意到海马Schaffer侧支突触的成对脉冲促进增加,与突触前释放的单倍体不足要求一致。而大脑中的条件性Cd2ap敲除显示在3.5或12个月大的小鼠中没有明显的行为缺陷,Cd2ap杂合小鼠在使用触摸屏任务的辨别学习中表现出细微的损伤。基于无偏见的蛋白质组学,Cd2ap的部分或完全丢失触发了蛋白质的扰动,在蛋白质折叠中起作用,脂质代谢,proteostasis,和突触功能。总的来说,我们的结果揭示了保守的,CD2AP在维持神经元结构和功能方面的剂量敏感性要求,包括突触稳态和可塑性,并告知我们对阿尔茨海默病可能的细胞类型特异性机制的理解。
    CD2-Associated protein (CD2AP) is a candidate susceptibility gene for Alzheimer\'s disease, but its role in the mammalian central nervous system remains largely unknown. We show that CD2AP protein is broadly expressed in the adult mouse brain, including within cortical and hippocampal neurons, where it is detected at pre-synaptic terminals. Deletion of Cd2ap altered dendritic branching and spine density, and impaired ubiquitin-proteasome system activity. Moreover, in mice harboring either one or two copies of a germline Cd2ap null allele, we noted increased paired-pulse facilitation at hippocampal Schaffer-collateral synapses, consistent with a haploinsufficient requirement for pre-synaptic release. Whereas conditional Cd2ap knockout in the brain revealed no gross behavioral deficits in either 3.5- or 12-month-old mice, Cd2ap heterozygous mice demonstrated subtle impairments in discrimination learning using a touchscreen task. Based on unbiased proteomics, partial or complete loss of Cd2ap triggered perturbation of proteins with roles in protein folding, lipid metabolism, proteostasis, and synaptic function. Overall, our results reveal conserved, dose-sensitive requirements for CD2AP in the maintenance of neuronal structure and function, including synaptic homeostasis and plasticity, and inform our understanding of possible cell-type specific mechanisms in Alzheimer\'s Disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    突触传递的可塑性是学习和记忆的基础。它伴随着突触密度和大小的变化,统称为结构可塑性。因此,理解结构可塑性的机制对于理解突触可塑性的机制至关重要。在这一章中,我们描述了成像单个树突脊柱的结构可塑性所需的程序和设备,它在中枢神经系统中拥有兴奋性突触,以及使用双光子荧光寿命显微镜(2P-FLIM)与基于Förster共振能量转移(FRET)的生物传感器相结合的潜在分子相互作用/生化反应。
    Plasticity of synaptic transmission underlies learning and memory. It is accompanied by changes in the density and size of synapses, collectively called structural plasticity. Therefore, understanding the mechanism of structural plasticity is critical for understanding the mechanism of synaptic plasticity. In this chapter, we describe the procedures and equipment required to image structural plasticity of a single dendritic spine, which hosts excitatory synapses in the central nervous system, and underlying molecular interactions/biochemical reactions using two-photon fluorescence lifetime microscopy (2P-FLIM) in combination with Förster resonance energy transfer (FRET)-based biosensors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    树突形态和树突棘是大脑神经元网络的关键特征。在患有精神疾病的患者和这些疾病的小鼠模型中已经观察到这些特征的异常。子宫内电穿孔是一种简单有效的基因转移系统,用于在子宫中发育小鼠胚胎。通过与Cre-loxP系统相结合,单个神经元的形态可以清晰而稀疏地可视化。这里,我们描述了该标记系统如何应用于可视化和评估皮质神经元的树突和树突棘。
    Dendrite morphology and dendritic spines are key features of the neuronal networks in the brain. Abnormalities in these features have been observed in patients with psychiatric disorders and mouse models of these diseases. In utero electroporation is an easy and efficient gene transfer system for developing mouse embryos in the uterus. By combining with the Cre-loxP system, the morphology of individual neurons can be clearly and sparsely visualized. Here, we describe how this labeling system can be applied to visualize and evaluate the dendrites and dendritic spines of cortical neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大脑功能依赖于协调的突触小泡动力学和受控的神经递质释放。多个生物分子缩合物在突触前和突触后共存,它们由结合结合的缩合驱动,相分离,和渗滤。在突触前,突触蛋白的内在无序区域(IDR)是凝聚的驱动因素,能够使突触囊泡(SV)聚集。尽管IDR的序列在进化过程中保守性差,我们的计算分析揭示了突触前蛋白的IDR中存在非随机组成偏差和序列模式(分子语法).例如,突触素-1,它对SV的缩合至关重要,含有精氨酸残基的保守化合价和沿着线性序列彼此分离的极性和脯氨酸残基的区块。我们表明,这些保守的特征对于在体外和细胞中驱动突触素1缩合至关重要。我们的结果强调了保守的分子语法如何驱动突触前关键蛋白的凝聚。
    Brain functioning relies on orchestrated synaptic vesicle dynamics and controlled neurotransmitter release. Multiple biomolecular condensates coexist at the pre- and post-synapse and they are driven by condensation that combines binding, phase separation, and percolation. In pre-synapses, intrinsically disordered regions (IDRs) of synaptic proteins are drivers of condensation that enable clustering of synaptic vesicles (SVs). Although sequences of IDRs are poorly conserved across evolution, our computational analysis reveals the existence of non-random compositional biases and sequence patterns (molecular grammars) in IDRs of pre-synaptic proteins. For example, synapsin-1, which is essential for condensation of SVs, contains a conserved valence of arginine residues and blocks of polar and proline residues that are segregated from one another along the linear sequence. We show that these conserved features are crucial for driving synapsin-1 condensation in vitro and in cells. Our results highlight how conserved molecular grammars drive the condensation of key proteins at the pre-synapse.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们报告了由嵌入聚(甲基丙烯酸甲酯)(PMMA)薄膜中的二氧化锗纳米颗粒(GeO2NP)组成的混合忆阻器器件。除了在原始条件下表现出无形成电阻开关和不常见的“ON”状态之外,混合(纳米复合材料)器件展示了混合模式切换的独特形式。所观察到的停止电压相关切换实现了具有短期(易失性/时间)和长期(非易失性/非时间)模式的现有技术的双功能突触行为,所述模式根据所施加的停止电压而可切换。短期记忆模式设备被证明可以进一步模拟重要的突触功能,例如短期增强(STP),短期抑郁症(STD),配对脉冲促进(PPF),强直性增强后(PTP),尖峰电压依赖性可塑性(SVDP),尖峰持续时间依赖性可塑性(SDDP),and,更重要的是,“学习-遗忘-排练”行为。长期记忆模式为长期可塑性应用提供了额外的长期增强(LTP)和长期抑制(LTD)特征。这项工作显示了两种电阻开关模式的独特共存,为硬件级别的未来自适应和可重新配置的神经形态计算系统在设备设计方面提供更大的灵活性。
    We report on hybrid memristor devices consisting of germanium dioxide nanoparticles (GeO2 NP) embedded within a poly(methyl methacrylate) (PMMA) thin film. Besides exhibiting forming-free resistive switching and an uncommon \"ON\" state in pristine conditions, the hybrid (nanocomposite) devices demonstrate a unique form of mixed-mode switching. The observed stopping voltage-dependent switching enables state-of-the-art bifunctional synaptic behavior with short-term (volatile/temporal) and long-term (nonvolatile/nontemporal) modes that are switchable depending on the stopping voltage applied. The short-term memory mode device is demonstrated to further emulate important synaptic functions such as short-term potentiation (STP), short-term depression (STD), paired-pulse facilitation (PPF), post-tetanic potentiation (PTP), spike-voltage-dependent plasticity (SVDP), spike-duration-dependent plasticity (SDDP), and, more importantly, the \"learning-forgetting-rehearsal\" behavior. The long-term memory mode gives additional long-term potentiation (LTP) and long-term depression (LTD) characteristics for long-term plasticity applications. The work shows a unique coexistence of the two resistive switching modes, providing greater flexibility in device design for future adaptive and reconfigurable neuromorphic computing systems at the hardware level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    跨膜蛋白β-淀粉样前体蛋白(APP)在阿尔茨海默病(AD)的病理生理学中起着重要作用。β-淀粉样蛋白假说认为APP的异常加工会形成神经毒性的β-淀粉样蛋白聚集体,这导致在AD中观察到的认知障碍。虽然许多其他因素有助于AD,有必要更好地了解APP的突触功能。我们发现果蝇APP样(APPL)在与Kismet(Kis)的突触中具有共享和非共享的角色,染色质解旋酶结合域(CHD)蛋白。Kis是CHD7和CHD8的同源物,两者都涉及神经发育障碍,包括CHARGE综合征和自闭症谱系障碍,分别。在其中枢神经系统中表达人APP和BACE的kis和动物中功能突变的丧失显示谷氨酸受体亚基的减少,GluRIIC,GTP酶Rab11和骨形态发生蛋白(BMP),pMad,在果蝇幼虫神经肌肉接头(NMJ)。同样,像内吞这样的过程,幼虫运动,这些动物的神经传递是有缺陷的。我们的药理学和上位性实验表明,Kis和APPL之间存在功能关系,但是Kis不调节幼虫NMJ的appl表达。相反,它可能影响APPL的突触定位,可能是通过促进rab11转录。这些数据确定了AD中染色质重塑蛋白与异常突触功能之间的潜在机制联系。
    The transmembrane protein β-amyloid precursor protein (APP) is central to the pathophysiology of Alzheimer\'s disease (AD). The β-amyloid hypothesis posits that aberrant processing of APP forms neurotoxic β-amyloid aggregates, which lead to the cognitive impairments observed in AD. Although numerous additional factors contribute to AD, there is a need to better understand the synaptic function of APP. We have found that Drosophila APP-like (APPL) has both shared and non-shared roles at the synapse with Kismet (Kis), a chromatin helicase binding domain (CHD) protein. Kis is the homolog of CHD7 and CHD8, both of which are implicated in neurodevelopmental disorders including CHARGE Syndrome and autism spectrum disorders, respectively. Loss of function mutations in kis and animals expressing human APP and BACE in their central nervous system show reductions in the glutamate receptor subunit, GluRIIC, the GTPase Rab11, and the bone morphogenetic protein (BMP), pMad, at the Drosophila larval neuromuscular junction (NMJ). Similarly, processes like endocytosis, larval locomotion, and neurotransmission are deficient in these animals. Our pharmacological and epistasis experiments indicate that there is a functional relationship between Kis and APPL, but Kis does not regulate appl expression at the larval NMJ. Instead, Kis likely influences the synaptic localization of APPL, possibly by promoting rab11 transcription. These data identify a potential mechanistic connection between chromatin remodeling proteins and aberrant synaptic function in AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    位于C9orf72基因非编码区的内含子GGGGCC六核苷酸的致病性扩增代表了肌萎缩性侧索硬化症(ALS)和额颞叶痴呆(FTD)的最常见遗传原因。这种突变导致有毒RNA病灶和二肽重复序列(DPRs)的积累,以及C9orf72蛋白水平降低。因此,功能的获得和丧失都是与C9orf72-ALS/FTD相关的共存致病因素。突触改变已经在C9orf72模型中得到了很大的描述,但目前尚不清楚病理的哪个方面主要导致这些损伤。为了解决这个问题,我们研究了聚(GA)积累时突触随时间的动态变化,最丰富的DPR。这种毒性形式的过表达导致原代神经元培养物中突触蛋白的急剧损失,预测自噬缺陷。令人惊讶的是,突触蛋白质组的显著损伤特征与网络特性的变化并不完全匹配。事实上,高密度多电极阵列分析仅强调了聚(GA)神经元的尖峰数和放电率的微小降低。我们的数据表明,与C9orf72相关的毒性功能增益会影响突触蛋白质组,但对网络活动仅产生较小的影响。
    The pathogenic expansion of the intronic GGGGCC hexanucleotide located in the non-coding region of the C9orf72 gene represents the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This mutation leads to the accumulation of toxic RNA foci and dipeptide repeats (DPRs), as well as reduced levels of the C9orf72 protein. Thus, both gain and loss of function are coexisting pathogenic aspects linked to C9orf72-ALS/FTD. Synaptic alterations have been largely described in C9orf72 models, but it is still not clear which aspect of the pathology mostly contributes to these impairments. To address this question, we investigated the dynamic changes occurring over time at the synapse upon accumulation of poly(GA), the most abundant DPR. Overexpression of this toxic form induced a drastic loss of synaptic proteins in primary neuron cultures, anticipating autophagic defects. Surprisingly, the dramatic impairment characterizing the synaptic proteome was not fully matched by changes in network properties. In fact, high-density multi-electrode array analysis highlighted only minor reductions in the spike number and firing rate of poly(GA) neurons. Our data show that the toxic gain of function linked to C9orf72 affects the synaptic proteome but exerts only minor effects on the network activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Iontronic流体离子/电子组件正在成为人造类脑计算系统的有前途的元素。纳米孔离子整流器可以作为突触元件操作,表现出响应于一系列电压脉冲的电导调制,从而产生可编程电阻状态。我们提出了一个复制滞后的模型,整改,和时域响应属性,基于两个传导模式之间的电导调制和状态变量的弛豫时间。我们表明,在磁滞回线中观察到的动力学效应控制着与电导率调制有关的增强现象。为了说明模型的有效性,我们将其应用于复制纠正,两个不同实验系统的滞后和电导调制:具有锥形孔的聚合物膜,和具有阻挡氧化物层的盲孔纳米多孔阳极氧化铝膜。我们表明,模型的时间瞬态分析发展了观察到的突触特性的增强和抑制现象。
    Iontronic fluidic ionic/electronic components are emerging as promising elements for artificial brain-like computation systems. Nanopore ionic rectifiers can be operated as a synapse element, exhibiting conductance modulation in response to a train of voltage impulses, thus producing programmable resistive states. We propose a model that replicates hysteresis, rectification, and time domain response properties, based on conductance modulation between two conducting modes and a relaxation time of the state variable. We show that the kinetic effects observed in hysteresis loops govern the potentiation phenomena related to conductivity modulation. To illustrate the efficacy of the model, we apply it to replicate rectification, hysteresis and conductance modulation of two different experimental systems: a polymer membrane with conical pores, and a blind-hole nanoporous anodic alumina membrane with a barrier oxide layer. We show that the time transient analysis of the model develops the observed potentiation and depression phenomena of the synaptic properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞适应如何引起阿片类药物对吗啡等阿片类药物的镇痛耐受性尚不清楚。对于一个,疼痛是一种复杂的现象,由感觉和情感成分组成,主要通过单独的电路介导。从内侧丘脑(MThal)到前扣带皮质(ACC)的谷氨酸能投射与情感性疼痛的处理有关,疼痛体验中相对缺乏研究的组成部分。这项研究的目的是确定慢性吗啡暴露对mu-阿片受体(MOR)信号传导对兴奋性和前馈抑制途径内MThal-ACC突触传递的影响。使用全细胞膜片钳电生理学和光遗传学来选择性地靶向这些投射,我们在药物治疗和慢性吗啡治疗的小鼠中测量了吗啡介导的ACC层V锥体神经元中光学诱发的突触后电流的抑制作用。我们发现,吗啡灌注对女性的兴奋性和前馈性抑制途径的抑制作用相似,但对男性的抑制作用更大。慢性吗啡治疗强烈减弱了男性抑制途径内的吗啡突触前抑制,但不是女性,并且在两种性别的兴奋途径中都轻度减弱了突触前抑制。在MOR磷酸化缺陷型小鼠中未观察到这些作用。这项研究表明,慢性吗啡治疗可在与疼痛和阿片类药物镇痛相关的丘脑-皮质回路中诱导细胞对吗啡的耐受性。此外,这表明这种耐受性可能是由MOR磷酸化驱动的。总的来说,这些发现提高了我们对慢性阿片类药物暴露如何以可能有助于阿片类药物镇痛耐受的方式改变细胞信号传导的认识.
    How cellular adaptations give rise to opioid analgesic tolerance to opioids like morphine is not well understood. For one, pain is a complex phenomenon comprised of both sensory and affective components, largely mediated through separate circuits. Glutamatergic projections from the medial thalamus (MThal) to the anterior cingulate cortex (ACC) are implicated in processing of affective pain, a relatively understudied component of the pain experience. The goal of this study was to determine the effects of chronic morphine exposure on mu-opioid receptor (MOR) signaling on MThal-ACC synaptic transmission within the excitatory and feedforward inhibitory pathways. Using whole-cell patch clamp electrophysiology and optogenetics to selectively target these projections, we measured morphine-mediated inhibition of optically evoked postsynaptic currents in ACC layer V pyramidal neurons in drug-naïve and chronically morphine treated mice. We found that that morphine perfusion inhibited the excitatory and feedforward inhibitory pathways similarly in females but caused greater inhibition of the inhibitory pathway in males. Chronic morphine treatment robustly attenuated morphine presynaptic inhibition within the inhibitory pathway in males, but not females, and mildly attenuated presynaptic inhibition within the excitatory pathway in both sexes. These effects were not observed in MOR phosphorylation-deficient mice. This study indicates that chronic morphine treatment induces cellular tolerance to morphine within a thalamo-cortical circuit relevant to pain and opioid analgesia. Furthermore, it suggests this tolerance may be driven by MOR phosphorylation. Overall, these findings improve our understanding of how chronic opioid exposure alters cellular signaling in ways that may contribute to opioid analgesic tolerance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管越来越多的描述野生型亨廷顿(wt-HTT)在成人脑功能和,最近,发展,几项临床试验正在探索针对wt-HTT和负责亨廷顿氏病(HD)的突变同工型(mut-HTT)的HTT降低方法。这种非选择性靶向是基于HD的常染色体显性遗传,支持mut-HTT通过毒性功能增益或显性负面机制发挥其有害作用的观点。然而,成人和发育过程中健康神经元所需的wt-HTT的确切数量尚不清楚.在这项研究中,我们通过研究wt-HTT损失如何影响人类神经元网络的形成来解决这个问题,突触成熟,和体外稳态。我们的发现确立了wt-HTT在体外建模的人皮层神经元网络的树突化成熟和获得网络范围的同步活动中的作用。有趣的是,只有当超过三分之二的wt-HTT蛋白耗尽时,网络同步缺陷才会变得明显。我们的研究强调了准确了解wt-HTT在神经元健康中的作用的迫切需要。它还强调了HD患者中与针对wt-和mut-HTT同工型的非选择性治疗方法相关的过度wt-HTT损失的潜在风险。
    Despite growing descriptions of wild-type Huntingtin (wt-HTT) roles in both adult brain function and, more recently, development, several clinical trials are exploring HTT-lowering approaches that target both wt-HTT and the mutant isoform (mut-HTT) responsible for Huntington\'s disease (HD). This non-selective targeting is based on the autosomal dominant inheritance of HD, supporting the idea that mut-HTT exerts its harmful effects through a toxic gain-of-function or a dominant-negative mechanism. However, the precise amount of wt-HTT needed for healthy neurons in adults and during development remains unclear. In this study, we address this question by examining how wt-HTT loss affects human neuronal network formation, synaptic maturation, and homeostasis in vitro. Our findings establish a role of wt-HTT in the maturation of dendritic arborization and the acquisition of network-wide synchronized activity by human cortical neuronal networks modeled in vitro. Interestingly, the network synchronization defects only became apparent when more than two-thirds of the wt-HTT protein was depleted. Our study underscores the critical need to precisely understand wt-HTT role in neuronal health. It also emphasizes the potential risks of excessive wt-HTT loss associated with non-selective therapeutic approaches targeting both wt- and mut-HTT isoforms in HD patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号