Sympathetic excitation

  • 文章类型: Journal Article
    这项研究旨在确定三甲胺N-氧化物(TMAO)是否参与衰老的交感神经激活及其潜在机制。我们的假设是TMAO减少P2Y12受体(P2Y12R)并在室旁核(PVN)中诱导小胶质细胞介导的炎症,然后导致衰老的交感神经激活。这项研究涉及18名年轻人和16名老年人。通过注射D-半乳糖(D-gal,200mg/kg/d)皮下连续12周。通过饮用水给药TMAO(120mg/kg/d)或1%3,3-二甲基-1-丁醇(DMB)12周,以研究它们对衰老大鼠神经炎症和交感神经激活的影响。等离子TMAO,老年人的NE和IL-1β水平高于年轻人。此外,所有正常到正常间隔的标准偏差(SDNN)和正常到正常间隔的平均值的标准偏差(SDANN)在老年人中较低,并且与TMAO呈负相关,表明老年人的交感神经激活,这与TMAO水平的增加有关。用D-gal治疗大鼠显示衰老相关蛋白水平和小胶质细胞介导的炎症增加,以及PVN中P2Y12R蛋白水平降低。等离子TMAO,NE和IL-1β水平升高,伴有增强的肾交感神经活动(RSNA)。而TMAO治疗加剧了上述现象,DMB缓解了它。这些发现表明,TMAO通过下调小胶质细胞中的P2Y12R和增加PVN中的炎症而有助于衰老中的交感神经过度活跃。这些结果可能为防治衰老和衰老相关疾病提供有前景的新靶点。
    This study aimed to determine whether trimethylamine N-oxide (TMAO) was involved in sympathetic activation in aging and the underlying mechanisms. Our hypothesis is TMAO reduces P2Y12 receptor (P2Y12R) and induces microglia-mediated inflammation in the paraventricular nucleus (PVN), then leading to sympathetic activation in aging. This study involved 18 young adults and 16 old adults. Aging rats were established by injecting D-galactose (D-gal, 200 mg/kg/d) subcutaneously for 12 weeks. TMAO (120 mg/kg/d) or 1% 3, 3-dimethyl-l-butanol (DMB) was administrated via drinking water for 12 weeks to investigate their effects on neuroinflammation and sympathetic activation in aging rats. Plasma TMAO, NE and IL-1β levels were higher in old adults than in young adults. In addition, standard deviation of all normal to normal intervals (SDNN) and standard deviation of the average of normal to normal intervals (SDANN) were lower in old adults and negatively correlated with TMAO, indicating sympathetic activation in old adults, which is associated with an increase in TMAO levels. Treatment of rats with D-gal showed increased senescence-associated protein levels and microglia-mediated inflammation, as well as decreased P2Y12R protein levels in PVN. Plasma TMAO, NE and IL-1β levels were increased, accompanied by enhanced renal sympathetic nerve activity (RSNA). While TMAO treatment exacerbated the above phenomenon, DMB mitigated it. These findings suggest that TMAO contributes to sympathetic hyperactivity in aging by downregulating P2Y12R in microglia and increasing inflammation in the PVN. These results may provide promising new target for the prevention and treatment of aging and aging-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究旨在探讨心血管疾病与衰老之间的中心关系。D-半乳糖(D-gal)用于诱导加速衰老模型,并评估硫化氢(H2S)对衰老相关心血管危险因素和机制的影响。八周大的SpragueDawley大鼠每天腹膜内注射250mg/kgD-gal,有或没有H2S(56μmol/kg),持续12周。我们发现D-gal治疗引起p16,p53和p21蛋白水平和衰老相关的β-半乳糖苷酶染色的显着衰老相关增加。此外,去甲肾上腺素水平升高,老年大鼠伴有血压升高和肾交感神经活动。更大的交感神经反应与炎症水平的增加有关。在D-gal诱导的老年大鼠中,室旁核神经元中klotho水平的降低也有助于交感神经激活。然而,外源性给予H2S减弱老年大鼠的交感神经活性,血压下降证明了这一点,肾交感神经活动和去甲肾上腺素水平。细胞衰老的改善,室旁核的炎症和klotho升高归因于H2S的保护作用。本研究为H2S预防或治疗衰老相关心血管疾病的药物开发提供了进一步的证据。
    The present study aimed to explore the central relationship between cardiovascular conditions and aging. D-galactose (D-gal) was utilized to induce an accelerated aging model and to evaluate the effects of hydrogen sulfide (H2S) on aging-related cardiovascular risk factors and mechanisms. Eight-week-old Sprague Dawley rats were given an intraperitoneal injection of 250 mg/kg D-gal every day with or without H2S (56 μmol/kg) for 12 weeks. We found that D-gal treatment induced a noticeably aging-related increase in p16, p53 and p21 protein levels and senescence-associated beta-galactosidase staining. In addition, the level of noradrenalin was increased, accompanied by enhanced blood pressure and renal sympathetic nerve activity in aged rats. The greater sympathetic responses were related with the increased level of inflammation. The decreased level of klotho in the paraventricular nucleus neuron also contributed to sympathetic activation in D-gal-induced aged rats. However, the exogenous administration of H2S attenuated the sympathetic activity in aged rats, as evidenced by the decreased blood pressure, renal sympathetic nerve activity and noradrenalin level. The ameliorated cellular senescence, inflammation and heightened klotho in the paraventricular nucleus were attributed to the protective effects of H2S. The present study provides further evidence for the drug development of H2S for the prevention or treatment of the aging-associated cardiovascular diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Sympathetic neurons are powerful drivers of cardiac excitability. In the early stages of hypertension, sympathetic hyperactivity is underpinned by down regulation of M current and increased activity of Cav2.2 that is associated with greater intracellular calcium transients and enhanced neurotransmission. Emerging evidence suggests that retrograde signaling from the myocyte itself can modulate synaptic plasticity. Here we tested the hypothesis that cross culturing healthy myocytes onto diseased stellate neurons could influence sympathetic excitability. We employed neuronal mono-cultures, co-cultures of neonatal ventricular myocytes and sympathetic stellate neurons, and mono-cultures of sympathetic neurons with media conditioned by myocytes from normal (Wistar) and pre-hypertensive (SHR) rats, which have heightened sympathetic responsiveness. Neuronal firing properties were measured by current-clamp as a proxy for neuronal excitability. SHR neurons had a maximum higher firing rate, and reduced rheobase compared to Wistar neurons. There was no difference in firing rate or other biophysical properties in Wistar neurons when they were co-cultured with healthy myocytes. However, the firing rate decreased, phenocopying the Wistar response when either healthy myocytes or media in which healthy myocytes were grown was cross-cultured with SHR neurons. This supports the idea of a paracrine signaling pathway from the healthy myocyte to the diseased neuron, which can act as a modulator of sympathetic excitability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    表皮生长因子受体(EGFR)酪氨酸激酶的激活与下丘脑室旁核(PVN)中细胞外信号调节激酶(ERK)1/2信号的增加有关,这有助于心力衰竭(HF)的交感神经兴奋。转化生长因子(TGF)-α是EGFR的主要内源性配体。本研究试图确定TGF-α是否在HF中的PVN中增加并促进EGFR的激活以增加ERK1/2活性。雄性大鼠接受EGFRsiRNA或乱序siRNA的双侧PVN显微注射,然后一周后进行脑室内(ICV)注射TGF-α或载体。在用乱序siRNA预处理的大鼠中,ICVTGF-α增加了磷酸化(p-)EGFR,并上调了p-ERK1/2的表达以及PVN中促炎细胞因子(PIC)和肾素-血管紧张素系统(RAS)成分的mRNA水平,与未处理的年龄匹配的对照大鼠相比。这些对ICVTGF-α的反应在用EGFRsiRNA预处理的大鼠中显著减弱。此外,在HF大鼠中双侧PVN显微注射TGF-αsiRNA显着降低了TGF-α水平的升高,p-EGFR,p-ERK1/2和PIC和RAS组分在PVN中的mRNA表达,与用乱序siRNA处理的HF大鼠相比。TGF-αsiRNA处理的HF大鼠还表现出较低的血浆去甲肾上腺素水平和改善的HF外周表现。这些数据表明,TGF-α表达在HF中的PVN中上调,并诱导EGFR介导的ERK1/2信号的激活以增强炎症和RAS活性,从而驱动HF中的交感神经兴奋。
    Activation of epidermal growth factor receptor (EGFR) tyrosine kinase is associated with increased extracellular signal-regulated kinase (ERK) 1/2 signaling in the hypothalamic paraventricular nucleus (PVN), which contributes to the sympathetic excitation in heart failure (HF). Transforming growth factor (TGF)-α is a major endogenous ligand for EGFR. The present study sought to determine whether TGF-α increases in the PVN in HF and promotes the activation of EGFR to increase ERK1/2 activity. Male rats received bilateral PVN microinjections of an EGFR siRNA or a scrambled siRNA followed by an intracerebroventricular (ICV) injection of TGF-α or vehicle one week later. In rats pretreated with the scrambled siRNA, ICV TGF-α increased phosphorylated (p-) EGFR and upregulated the expression of p-ERK1/2 and mRNA levels of proinflammatory cytokines (PICs) and renin-angiotensin system (RAS) components in the PVN, when compared with the untreated age-matched control rats. These responses to ICV TGF-α were significantly attenuated in rats pretreated with the EGFR siRNA. Furthermore, bilateral PVN microinjection of a TGF-α siRNA in HF rats significantly decreased the elevated levels of TGF-α, p-EGFR, p-ERK1/2 and the mRNA expression of PICs and RAS components in the PVN, compared with the HF rats treated with a scrambled siRNA. The TGF-α siRNA-treated HF rats also exhibited lower plasma norepinephrine levels and improved peripheral manifestations of HF. These data suggest that TGF-α expression is upregulated in the PVN in HF and induces the activation of EGFR-mediated ERK1/2 signaling to augment the inflammation and RAS activity that drives sympathetic excitation in HF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Sympathetic stimulated-cardiac fibrosis imposes great significance on both disease progression and survival in the pathogenesis of many cardiovascular diseases. However, there are few effective therapies targeting it clinically. The cardioprotective effect of aldehyde dehydrogenase 2 (ALDH2) has been explored in many pathological conditions, whether it can exert benefit effects on chronic sympathetic stimulus-induced cardiac fibrosis remains unclear. In this study, we determined to explore the role of ALDH2 on isoproterenol (ISO)-induced cardiac fibroblasts (CF) proliferation and cardiac fibrosis. It was found that ALDH2 enzymatic activity was impaired in ISO-induced HCF proliferation and Aldh2 deficiency promoted mouse CF proliferation. Alda-1, an ALDH2 activator, exerted obvious suppressive effect on ISO-induced HCF proliferation, together with the induction of cell cycle arrest at G0/G1 phase and decreased expression of cyclin E1 and cyclin-dependent kinase 2 (CDK2). Mechanistically, the inhibitory role of Alda-1 on HCF proliferation was achieved by decreasing mitochondrial reactive oxygen species (ROS) production, which was partially reversed by rotenone, an inducer of ROS. In addition, wild-type mice treated with Alda-1 manifested with reduced fibrosis and better cardiac function after ISO pump. In summary, Alda-1 alleviates sympathetic excitation-induced cardiac fibrosis via decreasing mitochondrial ROS accumulation, highlighting ALDH2 activity as a promising drug target of cardiac fibrosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    UNASSIGNED: Numerous findings have demonstrated a strong association between parental health during pregnancy and cardiovascular disease in adult offspring. This study investigated whether sensitivity to angiotensin II (Ang II) is enhanced in offspring of renovascular hypertensive animals and whether hydrogen sulfide (H2S) can attenuate the increased response to Ang II in offspring.
    UNASSIGNED: The systolic blood pressure (SBP) was measured by non-invasive tail-cuff plethysmograpy every two weeks in all offspring from 8 to 16 weeks. After intracerebroventricular microinjection of Ang II in the offspring, blood pressure, heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded to test the response to Ang II in the offspring. Western blot analysis was used to examine the protein expression of AT1R, AT1R-associated protein (ATRAP), Nox2, p67phox, and nitrotyrosine in the nucleus tractus solitarii (NTS).
    UNASSIGNED: The SBP in the offspring of hypertensive rats were significantly higher than that in control group, and the above effects were significantly improved by prenatal or postnatal administration of H2S. Intralateroventricular microinjection of Ang II induced greater sympathetic responses in offspring of hypertensive rats than control group. The expression of AT1R and oxidative stress-related protein was increased, whereas that of ATRAP was decreased in the NTS in offspring of hypertensive rats. Exogenous administration of H2S prenatally or postnatally improved the above effects.
    UNASSIGNED: Prenatal or postnatal administration of H2S attenuated AngII-induced sympathetic excitation in offspring of hypertensive rats, which may occur by modulating the balance between AT1R and ATRAP and downregulating oxidative stress-related protein expression in the NTS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    演讲中的性别差异,结果,和收缩性心力衰竭(HF)的治疗反应已经报道。在本研究中,我们研究了性别对HF大鼠神经体液兴奋的中枢神经机制及其外周表现的影响。雄性和雌性Sprague-Dawley大鼠进行冠状动脉结扎(CL)以诱导HF。年龄匹配的大鼠作为对照。CL后24h和4wk的缺血区和左心室功能相似。雌性大鼠有较低的死亡率和较少的血流动力学损害,肺充血,CL后4周右心室重构。血浆血管紧张素II(ANGII),精氨酸加压素(AVP),在两种性别的HF大鼠中去甲肾上腺素水平都升高,但雌性大鼠的AVP和去甲肾上腺素水平增加较少。在下丘脑室旁核,导致HF神经体液兴奋的关键心血管相关核,在两种性别的HF大鼠中,促炎细胞因子肿瘤坏死因子-α和白介素-1β以及环氧合酶-2和ANGII1a型受体的mRNA水平均增加,但雌性老鼠的情况就不那么严重了。血管紧张素转换酶2蛋白水平在雌性HF大鼠中升高,而在雄性HF大鼠中降低。与相应的雄性组相比,对照组和HF组的雌性大鼠中AVP的mRNA水平较低。在HF的两种性别中,细胞外信号调节蛋白激酶1和2的激活均相似。结果表明,与具有相同程度的初始缺血性心脏损伤的雄性HF大鼠相比,雌性HF大鼠的中枢神经兴奋较少,相关的血液动力学损害较少。新的和注意的性别差异在表现和对心力衰竭(HF)治疗的反应得到广泛认可,但潜在的机制却知之甚少。本研究描述了在缺血诱发的HF中驱动神经体液兴奋的中枢神经系统机制的性别差异。雌性大鼠对HF的中枢神经化学反应强度较低,血液动力学受损较少。性激素可能导致中枢和外周对HF适应的这些差异。
    Sex differences in the presentation, outcome, and responses to treatment of systolic heart failure (HF) have been reported. In the present study, we examined the effect of sex on central neural mechanisms contributing to neurohumoral excitation and its peripheral manifestations in rats with HF. Male and female Sprague-Dawley rats underwent coronary artery ligation (CL) to induce HF. Age-matched rats served as controls. Ischemic zone and left ventricular function were similar 24 h and 4 wk after CL. Female rats with HF had a lower mortality rate and less hemodynamic compromise, pulmonary congestion, and right ventricular remodeling 4 wk after CL. Plasma angiotensin II (ANG II), arginine vasopressin (AVP), and norepinephrine levels were increased in HF rats in both sexes, but AVP and norepinephrine levels increased less in female rats. In the hypothalamic paraventricular nucleus, a key cardiovascular-related nucleus contributing to neurohumoral excitation in HF, mRNA levels for the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β as well as cyclooxygenase-2 and the ANG II type 1a receptor were increased in HF rats of both sexes, but less so in female rats. Angiotensin-converting enzyme 2 protein levels increased in female HF rats but decreased in male HF rats. mRNA levels of AVP were lower in female rats in both control and HF groups compared with the respective male groups. Activation of extracellular signal-regulated protein kinases 1 and 2 increased similarly in both sexes in HF. The results suggest that female HF rats have less central neural excitation and less associated hemodynamic compromise than male HF rats with the same degree of initial ischemic cardiac injury. NEW & NOTEWORTHY Sex differences in the presentation and responses to treatment of heart failure (HF) are widely recognized, but the underlying mechanisms are poorly understood. The present study describes sex differences in the central nervous system mechanisms that drive neurohumoral excitation in ischemia-induced HF. Female rats had a less intense central neurochemical response to HF and experienced less hemodynamic compromise. Sex hormones may contribute to these differences in the central and peripheral adaptations to HF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Obstructive sleep apnea (OSA), characterized by recurrent collapse of the upper airway during sleep leading to chronic intermittent hypoxia (CIH), is an independent risk factor for hypertension. Sympathetic excitation has been shown to play a major role in the pathogenesis of OSA-associated hypertension. Accumulating evidence indicates that oxidative stress and inflammation in the hypothalamic paraventricular nucleus (PVN), a critical cardiovascular and autonomic center, mediate sympathetic excitation in many cardiovascular diseases. Here we tested the hypothesis that CIH elevates oxidative stress and inflammation in the PVN, which might be associated with sympathetic excitation and increased blood pressure in a rat model of CIH that mimics the oxygen profile in patients with OSA. Sprague-Dawley rats were pretreated with intracerebroventricular (ICV) infusion of vehicle or superoxide scavenger tempol, and then exposed to control or CIH for 7 days. Compared with control+vehicle rats, CIH+vehicle rats exhibited increased blood pressure, and increased sympathetic drive as indicated by the blood pressure response to ganglionic blockade and plasma norepinephrine levels. Pretreatment with ICV tempol prevented CIH-induced increases in blood pressure and sympathetic drive. Molecular studies revealed that expression of NAD(P)H oxidase subunits, production of reactive oxygen species, expression of proinflammatory cytokines and neuronal excitation in the PVN were elevated in CIH+vehicle rats, compared with control+vehicle rats, but were normalized or reduced in CIH rat pretreated with ICV tempol. Notably, CIH+vehicle rats also had increased systemic oxidative stress and inflammation, which were not altered by ICV tempol. The results suggest that CIH induces elevated oxidative stress and inflammation in the PVN, which lead to PVN neuronal excitation and are associated with sympathetic excitation and increased blood pressure. Central oxidative stress and inflammation may be novel targets for the prevention and treatment of hypertension in patients with OSA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号