Suprachiasmatic Nucleus

视交叉上核
  • 文章类型: Journal Article
    哺乳动物昼夜节律的主控是视交叉上核(SCN),由腹侧和背侧区域形成。在SCN神经元中,GABA在成年期具有重要的功能,甚至具有兴奋性作用。然而,这种神经递质在发育中的SCN中的生理作用尚不清楚。这里,我们记录了GABA能突触后电流(在穿孔补片配置中使用了小草菌素)以确定氯化物逆转电位(ECl),并评估了Na-K-Cl协同转运蛋白1(NKCC1)在大鼠早期年龄(出生后3至25天)的免疫表达,在白天和黑夜,在两个SCN区域中。我们检测到ECl随年龄以及取决于SCN区域和一天中的时间而变化很大。广义地说,随着年龄的增长,ECl更加超极化,除了在腹侧SCN中白天和黑夜研究的年龄最大(P20-25),在不那么消极的地方。同样,白天和晚上,ECl在背侧SCN中的超极化程度更高;而ECl在夜间在腹侧和背侧SCN中均呈阴性。此外,白天NKCC1荧光表达总量高于夜间。这些结果表明NKCC1调节[Cl-]i的昼夜节律和发育波动以微调ECl,这对于SCN中发生的兴奋性或抑制性GABA能作用至关重要。
    The master control of mammalian circadian rhythms is the suprachiasmatic nucleus (SCN), which is formed by the ventral and dorsal regions. In SCN neurons, GABA has an important function and even excitatory actions in adulthood. However, the physiological role of this neurotransmitter in the developing SCN is unknown. Here, we recorded GABAergic postsynaptic currents (in the perforated-patch configuration using gramicidin) to determine the chloride reversal potential (ECl) and also assessed the immunological expression of the Na-K-Cl cotransporter 1 (NKCC1) at early ages of the rat (postnatal days (P) 3 to 25), during the day and night, in the two SCN regions. We detected that ECl greatly varied with age and depending on the SCN region and time of day. Broadly speaking, ECl was more hyperpolarized with age, except for the oldest age studied (P20-25) in both day and night in the ventral SCN, where it was less negative. Likewise, ECl was more hyperpolarized in the dorsal SCN both during the day and at night; while ECl was more negative at night both in the ventral and the dorsal SCN. Moreover, the total NKCC1 fluorescent expression was higher during the day than at night. These results imply that NKCC1 regulates the circadian and developmental fluctuations in the [Cl-]i to fine-tune ECl, which is crucial for either excitatory or inhibitory GABAergic actions to occur in the SCN.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    季节性日长,或者昼夜节律光周期,是一种普遍的环境信号,深刻地影响着生理和行为。在哺乳动物中,中央生物钟位于下丘脑的视交叉上核(SCN),在那里它接收视网膜输入并同步,或夹带物,对普遍光周期的有机体生理和行为。夹带过程诱导SCN持续可塑性,但SCN可塑性的分子机制尚不完全清楚。不同光周期的夹带会持续改变时机,波形,period,以及SCN时钟及其驱动节奏的光复位特性。为了阐明光周期可塑性分子机制的新候选基因,我们对从长(亮:暗[LD]16:8)和短(LD8:16)光周期饲养的小鼠解剖的整个SCN进行了RNA测序。在经历长光周期的小鼠中检测到较少的节律基因,总的来说,基因表达节律的时间提前4-6小时。然而,一些基因显示出明显的延迟,包括宝石.时钟相关基因Timeless和与光反应相关的SCN基因的表达有显著变化,神经肽,γ-氨基丁酸(GABA),离子通道,还有血清素.特别引人注目的是神经肽信号基因Prokr2和Cck的表达差异,以及3个SCN光响应基因表达的趋同调控,Dusp4,Rasd1和宝石。Dusp4和Rasd1的转录调节和Gem的相位调节是通过调节SCN神经元中关键的NMDAR-MAPK/ERK-CREB/CRE光信号通路在SCN光响应中可塑性的令人信服的候选分子机制。Prokr2和Cck的调制可能会在光周期夹带过程中严重支持SCN神经网络的重新配置。我们的发现将SCN光响应和神经肽信号传导基因集确定为阐明光周期可塑性新机制的丰富底物。数据也可在http://circadianphotoperiodseq.com/,用户可以在这些光周期条件下查看基因的表达和节律特性。
    Seasonal daylength, or circadian photoperiod, is a pervasive environmental signal that profoundly influences physiology and behavior. In mammals, the central circadian clock resides in the suprachiasmatic nuclei (SCN) of the hypothalamus where it receives retinal input and synchronizes, or entrains, organismal physiology and behavior to the prevailing light cycle. The process of entrainment induces sustained plasticity in the SCN, but the molecular mechanisms underlying SCN plasticity are incompletely understood. Entrainment to different photoperiods persistently alters the timing, waveform, period, and light resetting properties of the SCN clock and its driven rhythms. To elucidate novel candidate genes for molecular mechanisms of photoperiod plasticity, we performed RNA sequencing on whole SCN dissected from mice raised in long (light:dark [LD] 16:8) and short (LD 8:16) photoperiods. Fewer rhythmic genes were detected in mice subjected to long photoperiod, and in general, the timing of gene expression rhythms was advanced 4-6 h. However, a few genes showed significant delays, including Gem. There were significant changes in the expression of the clock-associated gene Timeless and in SCN genes related to light responses, neuropeptides, gamma aminobutyric acid (GABA), ion channels, and serotonin. Particularly striking were differences in the expression of the neuropeptide signaling genes Prokr2 and Cck, as well as convergent regulation of the expression of 3 SCN light response genes, Dusp4, Rasd1, and Gem. Transcriptional modulation of Dusp4 and Rasd1 and phase regulation of Gem are compelling candidate molecular mechanisms for plasticity in the SCN light response through their modulation of the critical NMDAR-MAPK/ERK-CREB/CRE light signaling pathway in SCN neurons. Modulation of Prokr2 and Cck may critically support SCN neural network reconfiguration during photoperiodic entrainment. Our findings identify the SCN light response and neuropeptide signaling gene sets as rich substrates for elucidating novel mechanisms of photoperiod plasticity. Data are also available at http://circadianphotoperiodseq.com/, where users can view the expression and rhythmic properties of genes across these photoperiod conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    下丘脑视交叉上核(SCN)容纳哺乳动物的中央昼夜节律振荡器。SCN中产生的主要神经递质是γ-氨基丁酸,精氨酸加压素(AVP),血管活性肠肽(VIP),垂体衍生的腺苷酸环化酶激活肽(PACAP),前动力蛋白2,神经介肽S,和胃泌素释放肽(GRP)。除了这些,在SCN中也检测到儿茶酚胺及其受体。在这项研究中,我们通过免疫组织化学证实了SCN和小鼠SCN衍生的永生化细胞系中β-肾上腺素受体的存在,免疫细胞化学,和药理学技术。然后,我们表征了β-肾上腺素能激动剂和拮抗剂对cAMP调节元件(CRE)信号传导的影响。此外,我们研究了β-肾上腺素能信号与影响平行信号通路的物质的相互作用。我们的发现对压力(肾上腺素升高)对生物钟的作用具有潜在的影响,并且可以解释用作抗高血压药物的β受体阻滞剂的某些副作用。
    The suprachiasmatic nucleus of the hypothalamus (SCN) houses the central circadian oscillator of mammals. The main neurotransmitters produced in the SCN are γ-amino-butyric acid, arginine-vasopressin (AVP), vasoactive intestinal peptide (VIP), pituitary-derived adenylate cyclase-activating peptide (PACAP), prokineticin 2, neuromedin S, and gastrin-releasing peptide (GRP). Apart from these, catecholamines and their receptors were detected in the SCN as well. In this study, we confirmed the presence of β-adrenergic receptors in SCN and a mouse SCN-derived immortalized cell line by immunohistochemical, immuno-cytochemical, and pharmacological techniques. We then characterized the effects of β-adrenergic agonists and antagonists on cAMP-regulated element (CRE) signaling. Moreover, we investigated the interaction of β-adrenergic signaling with substances influencing parallel signaling pathways. Our findings have potential implications on the role of stress (elevated adrenaline) on the biological clock and may explain some of the side effects of β-blockers applied as anti-hypertensive drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已知限时进食(RF)会改变大多数主要代谢组织中基因表达的相位,而视交叉上核昼夜节律时钟(SCNCC)与其外周CC(PCC)之间的时间失调已知会引起各种病理生理状况,包括代谢综合征.我们现在报道一种独特的光疗法,“涉及不同光强度(TZT0-ZT12150-TZT0-ZT12700lx,TZT0-ZT1275-TZT0-ZT12150lx,和TZT0-ZT12350-TZT0-ZT12700lx),重新调整SCNCC和PCC之间的RF产生的未对准。使用这样的高光制度,我们表明,通过转移SCNCC及其活动,在射频和“夜移小鼠模型”中,有可能预防/纠正病理生理学(例如,代谢综合征,记忆的丧失,心血管异常)。我们的数据表明,这种“强光状态”可以用作一种独特的时间疗法,对于那些上夜班或患有时差的人来说,为了重新调整他们的SCNCC和PCC,从而防止病理生理条件的产生。
    Time-restricted feeding (RF) is known to shift the phasing of gene expression in most primary metabolic tissues, whereas a time misalignment between the suprachiasmatic nucleus circadian clock (SCNCC) and its peripheral CCs (PCC\'s) is known to induce various pathophysiological conditions, including a metabolic syndrome. We now report that a unique \"light therapy,\" involving different light intensities (TZT0-ZT12150-TZT0-ZT12700 lx, TZT0-ZT1275-TZT0-ZT12150 lx, and TZT0-ZT12350-TZT0-ZT12700 lx), realigns the RF-generated misalignment between the SCNCC and the PCC\'s. Using such high-light regime, we show that through shifting the SCNCC and its activity, it is possible in a RF and \"night-shifted mouse model\" to prevent/correct pathophysiologies (e.g., a metabolic syndrome, a loss of memory, cardiovascular abnormalities). Our data indicate that such a \"high-light regime\" could be used as a unique chronotherapy, for those working on night shifts or suffering from jet-lag, in order to realign their SCNCC and PCC\'s, thereby preventing the generation of pathophysiological conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    昼夜节律和癫痫之间的相互作用越来越受到关注。视交叉上核(SCN),作为主要的昼夜节律起搏器,通过其复杂的神经网络调节生理和行为节律。然而,SCN及其Bmal1基因在癫痫发展中的确切作用尚不清楚.在这项研究中,我们利用锂-毛果芸香碱模型通过在SCN中产生病变并特异性敲除SCN神经元中的Bmal1基因来诱导小鼠癫痫和模拟昼夜节律紊乱。我们观察到毛果芸香碱诱导的癫痫小鼠白天发作频率增加,核心体温的不规则振荡,SCN和海马的昼夜节律基因改变。此外,从SCN到海马的GABA能投射激活增强.值得注意的是,SCN病变加剧了癫痫发作活动,伴随海马神经元损伤和GABA能信号传导损伤。使用基因表达综合数据库和基因集富集分析的进一步分析表明,内侧颞叶癫痫患者的Bmal1表达降低,可能影响GABA受体途径。SCN神经元中Bmal1的靶向缺失加剧了癫痫的发作和病理,以及海马GABA能功效减弱。这些结果强调了SCN在调节海马的昼夜节律和GABA能功能中的关键作用,加重癫痫发作的严重程度。这项研究为昼夜节律紊乱如何影响神经元功能障碍和癫痫提供了重要的见解。强调在癫痫治疗中靶向SCN和其中的Bmal1基因的治疗潜力。
    The interplay between circadian rhythms and epilepsy has gained increasing attention. The suprachiasmatic nucleus (SCN), which acts as the master circadian pacemaker, regulates physiological and behavioral rhythms through its complex neural networks. However, the exact role of the SCN and its Bmal1 gene in the development of epilepsy remains unclear. In this study, we utilized a lithium-pilocarpine model to induce epilepsy in mice and simulated circadian disturbances by creating lesions in the SCN and specifically knocking out the Bmal1 gene in the SCN neurons. We observed that the pilocarpine-induced epileptic mice experienced increased daytime seizure frequency, irregular oscillations in core body temperature, and circadian gene alterations in both the SCN and the hippocampus. Additionally, there was enhanced activation of GABAergic projections from the SCN to the hippocampus. Notably, SCN lesions intensified seizure activity, concomitant with hippocampal neuronal damage and GABAergic signaling impairment. Further analyses using the Gene Expression Omnibus database and gene set enrichment analysis indicated reduced Bmal1 expression in patients with medial temporal lobe epilepsy, potentially affecting GABA receptor pathways. Targeted deletion of Bmal1 in SCN neurons exacerbated seizures and pathology in epilepsy, as well as diminished hippocampal GABAergic efficacy. These results underscore the crucial role of the SCN in modulating circadian rhythms and GABAergic function in the hippocampus, aggravating the severity of seizures. This study provides significant insights into how circadian rhythm disturbances can influence neuronal dysfunction and epilepsy, highlighting the therapeutic potential of targeting SCN and the Bmal1 gene within it in epilepsy management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    位于视交叉上核(SCN)中的哺乳动物昼夜节律产生强大的日常节律,包括静醒。SCN神经元合成并响应γ-氨基丁酸(GABA),但其作用仍未解决。我们检验了以下假设:SCN中GABAA受体的γ2-和δ亚基在昼夜节律细胞之间的同步性调节方面有所不同。我们使用了两种方法:1)shRNA敲除(KD)SCN中γ2或δ亚基的表达,或2)敲入小鼠的内源性GABAAγ2或δ亚基的M2结构域中存在点突变。SCN中γ2或δ亚基的KD通过将昼夜节律幅度降低三分之一来增加日间跑步并减少夜间跑步。同样,δ亚基敲入小鼠显示昼夜节律振幅降低,增加日常活动的持续时间,每天总活动减少。Reduction,或γ2或δ亚基的突变使它们之间的同步性减半,和振幅,通过PERIOD2蛋白的放电率或表达来测量昼夜节律SCN细胞,在体外。令人惊讶的是,γ2亚基的过表达在KD或δ亚基突变后拯救了这些表型,和δ亚基的过表达挽救了由于γ2亚基KD或突变引起的缺陷。我们得出的结论是,γ2和δGABAA受体亚基在维持SCN的昼夜节律同步和每日休息-觉醒节律的幅度中起着相似的作用,但是它们相对密度的调节可以改变日常活动的持续时间和幅度。
    The mammalian circadian clock located in the suprachiasmatic nucleus (SCN) produces robust daily rhythms including rest-wake. SCN neurons synthesize and respond to γ-aminobutyric acid (GABA), but its role remains unresolved. We tested the hypothesis that γ2- and δ-subunits of the GABAA receptor in the SCN differ in their regulation of synchrony among circadian cells. We used two approaches: 1) shRNA to knock-down (KD) the expression of either γ2 or δ subunits in the SCN or 2) knock-in mice harboring a point mutation in the M2 domains of the endogenous GABAA γ2 or δ subunits. KD of either γ2 or δ subunits in the SCN increased daytime running and reduced nocturnal running by reducing their circadian amplitude by a third. Similarly, δ subunit knock-in mice showed decreased circadian amplitude, increased duration of daily activity, and decreased total daily activity. Reduction, or mutation of either γ2 or δ subunits halved the synchrony among, and amplitude of, circadian SCN cells as measured by firing rate or expression of the PERIOD2 protein, in vitro. Surprisingly, overexpression of the γ2 subunit rescued these phenotypes following KD or mutation of the δ subunit, and overexpression of the δ subunit rescued deficiencies due to γ2 subunit KD or mutation. We conclude that γ2 and δ GABAA receptor subunits play similar roles in maintaining circadian synchrony in the SCN and amplitude of daily rest-wake rhythms, but that modulation of their relative densities can change the duration and amplitude of daily activities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    昼夜节律和睡眠-觉醒状态的调节涉及多个神经回路。视交叉上核(SCN)是一种昼夜节律起搏器,可控制哺乳动物行为的节律振荡。基底前脑(BF)是睡眠-觉醒调节的关键大脑区域,SCN的下游。霍乱毒素亚单位B的逆行示踪显示从SCN直接投射到对角带(HDB)的水平肢体,BF的一个子区域。然而,SCN-HDB途径的基本功能仍然知之甚少。在这里,通过使用光遗传学记录,该途径的激活显着增加了黑暗阶段的非快速眼动(NREM)睡眠。此外,通过使用化学遗传学方法,该途径的激活在黑暗阶段的前4小时显着诱导了NREM睡眠。一起来看,这些发现揭示了SCN-HDB通路参与NREM睡眠调节,并提供了一种新的SCN相关通路参与睡眠-觉醒状态调节的直接证据.
    The regulation of circadian rhythms and the sleep-wake states involves in multiple neural circuits. The suprachiasmatic nucleus (SCN) is a circadian pacemaker that controls the rhythmic oscillation of mammalian behaviors. The basal forebrain (BF) is a critical brain region of sleep-wake regulation, which is the downstream of the SCN. Retrograde tracing of cholera toxin subunit B showed a direct projection from the SCN to the horizontal limbs of diagonal band (HDB), a subregion of the BF. However, the underlying function of the SCN-HDB pathway remains poorly understood. Herein, activation of this pathway significantly increased non-rapid eye movement (NREM) sleep during the dark phase by using optogenetic recordings. Moreover, activation of this pathway significantly induced NREM sleep during the dark phase for first 4 h by using chemogenetic methods. Taken together, these findings reveal that the SCN-HDB pathway participates in NREM sleep regulation and provides direct evidence of a novel SCN-related pathway involved in sleep-wake states regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    N6-甲基腺苷(m6A)是调节RNA分子命运的最丰富的表观基因组标记。最近的研究揭示了m6A修饰与生物钟之间的双向相互作用。然而,中央昼夜节律起搏器中m6A全球富集的精确时间动态尚未完全阐明。我们的研究调查了视交叉上核(SCN)原代细胞中FTO脱甲基酶与分子钟之间的关系。此外,我们研究了脂多糖(LPS)对Fto表达的影响以及FTO在原代SCN细胞培养物中LPS诱导的活性氧(ROS)产生中的作用。我们观察到全球m6A水平的昼夜节律,反映了Fto去甲基酶的节律表达。使用siRNA沉默FTO降低了SCN原代细胞中Per2节律性的中心,并延长了来自PER2::LUC小鼠的SCN原代细胞培养物中PER2节律的时间。当检查免疫反应时,我们发现,在SCN原代细胞培养物中,暴露于LPS可上调整体m6A水平,同时下调Fto表达。有趣的是,我们发现LPS处理后Fto表达的昼夜节律丧失,表明FTO水平的降低可能有助于m6A上调,而不直接调节其昼夜节律。探讨神经毒性炎症的潜在保护机制,我们在用FTOsiRNA预处理的SCN原代细胞培养物中检测了LPS处理后ROS的产生。我们观察到ROS诱导的时间依赖性模式,在同步后32小时有明显的峰值,但在20小时没有。使FTO脱甲基酶沉默可消除LPS暴露后的ROS诱导,支持以下假设:在SCN原代细胞培养物中,FTO下调是LPS诱导的神经炎症期间的保护机制。
    N6-methyladenosine (m6A) is the most abundant epitranscriptomic mark that regulates the fate of RNA molecules. Recent studies have revealed a bidirectional interaction between m6A modification and the circadian clock. However, the precise temporal dynamics of m6A global enrichment in the central circadian pacemaker have not been fully elucidated. Our study investigates the relationship between FTO demethylase and molecular clocks in primary cells of the suprachiasmatic nucleus (SCN). In addition, we examined the effects of lipopolysaccharide (LPS) on Fto expression and the role of FTO in LPS-induced reactive oxygen species (ROS) production in primary SCN cell culture. We observed circadian rhythmicity in the global m6A levels, which mirrored the rhythmic expression of the Fto demethylase. Silencing FTO using siRNA reduced the mesor of Per2 rhythmicity in SCN primary cells and extended the period of the PER2 rhythm in SCN primary cell cultures from PER2::LUC mice. When examining the immune response, we discovered that exposure to LPS upregulated global m6A levels while downregulating Fto expression in SCN primary cell cultures. Interestingly, we found a loss of circadian rhythmicity in Fto expression following LPS treatment, indicating that the decrease of FTO levels may contribute to m6A upregulation without directly regulating its circadian rhythm. To explore potential protective mechanisms against neurotoxic inflammation, we examined ROS production following LPS treatment in SCN primary cell cultures pretreated with FTO siRNA. We observed a time-dependent pattern of ROS induction, with significant peak at 32 h but not at 20 h after synchronization. Silencing the FTO demethylase abolished ROS induction following LPS exposure, supporting the hypothesis that FTO downregulation serves as a protective mechanism during LPS-induced neuroinflammation in SCN primary cell cultures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本文回顾了近交和转基因小鼠品系在破译哺乳动物褪黑激素能和昼夜节律系统中的作用。它集中在松果体器官作为褪黑激素工厂和褪黑激素能系统的两个主要目标,视交叉上核(SCN)和垂体结节(PT)。哺乳动物松果体细胞与真正的松果体和视网膜光感受器具有相同的分子特征,每天晚上合成并分泌褪黑激素到血液和脑脊液中。值得注意的是,神经元样连接存在于深松果体细胞和棘/前盖区之间,提示松果体-脑直接交流。啮齿动物中褪黑激素生物合成的控制涉及转录调节,包括CREB的磷酸化和mPer1的上调。在SCN中,褪黑素作用于MT1和MT2受体。褪黑素是不需要保持SCN分子时钟的节奏,但是它对光的昼夜节律同步有明显的影响,通过作用于MT2受体,促进昼夜节律系统的重新夹带,以使SCN分子时钟的水平分阶段提高,并在昼夜节律系统中起稳定作用,这从运动活动记录中可以看出。虽然SCN中的效果很微妙,褪黑素对PT功能至关重要。通过MT1受体,它驱动PT固有的分子时钟以及控制季节性节律的逆行和顺行输出途径。尽管近交系和转基因小鼠不表现出季节性繁殖,如果动物是褪黑激素熟练的,则来自PT的途径是完全完整的。因此,只有褪黑激素丰富的菌株适合研究昼夜节律和褪黑激素能系统。
    This contribution reviews the role of inbred and transgenic mouse strains for deciphering the mammalian melatoninergic and circadian system. It focusses on the pineal organ as melatonin factory and two major targets of the melatoninergic system, the suprachiasmatic nuclei (SCN) and the hypophysial pars tuberalis (PT). Mammalian pinealocytes sharing molecular characteristics with true pineal and retinal photoreceptors synthesize and secrete melatonin into the blood and cerebrospinal fluid night by night. Notably, neuron-like connections exist between the deep pinealocytes and the habenular/pretectal region suggesting direct pineal-brain communication. Control of melatonin biosynthesis in rodents involves transcriptional regulation including phosphorylation of CREB and upregulation of mPer1. In the SCN, melatonin acts upon MT1 and MT2 receptors. Melatonin is not necessary to maintain the rhythm of the SCN molecular clockwork, but it has distinct effects on the synchronization of the circadian rhythm by light, facilitates re-entrainment of the circadian system to phase advances in the level of the SCN molecular clockwork by acting upon MT2 receptors and plays a stabilizing role in the circadian system as evidenced from locomotor activity recordings. While the effects in the SCN are subtle, melatonin is essential for PT functions. Via the MT1 receptor it drives the PT-intrinsic molecular clockwork and the retrograde and anterograde output pathways controlling seasonal rhythmicity. Although inbred and transgenic mice do not show seasonal reproduction, the pathways from the PT are fully intact if the animals are melatonin proficient. Thus, only melatonin-proficient strains are suited to investigate the circadian and melatoninergic systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    昼夜节律是源于“主昼夜节律”的生物节律,“称为视交叉上核(SCN)。SCN用光作为首席时代周刊来协调昼夜节律,使人类能够将他们的日常生理行为活动与地球的明暗周期同步。然而,通过视网膜下丘脑(RHT)来自视网膜的慢性/不规则光紊乱可以破坏时钟基因的振幅和表达,例如周期昼夜节律时钟2,导致昼夜节律中断(CRd)和相关的神经病理学。本综述讨论了RHT中的神经调节,该神经调节源自内源性大麻素提供的视网膜光输入和调节,作为缓解CRd和相关神经功能障碍的功能。文献表明,大麻素激动剂通过调节其主要神经递质的活性来减轻SCN被夹带到光的能力,即,γ-氨基丁酸,从而防止光诱导的实验动物活动节奏的破坏。在视网膜上,内源性大麻素信号通过调节膜电流(Ca2+,K+,和Cl-通道)和光感受器和双极细胞的谷氨酸能神经传递。此外,内源性大麻素信号还调节高电压激活的Ca2通道,以减轻视网膜神经节细胞和内在光敏视网膜神经节细胞介导的谷氨酸释放。从而调节RHT介导的SCN神经元的光刺激以防止兴奋性毒性。根据文献,大麻素受体1和2正在成为药物发现范例中的新目标,内源性大麻素通过RHT参与光诱导的CRd可能会减轻严重的神经病变。
    Circadian rhythms are biological rhythms that originate from the \"master circadian clock,\" called the suprachiasmatic nucleus (SCN). SCN orchestrates the circadian rhythms using light as a chief zeitgeber, enabling humans to synchronize their daily physio-behavioral activities with the Earth\'s light-dark cycle. However, chronic/ irregular photic disturbances from the retina via the retinohypothalamic tract (RHT) can disrupt the amplitude and the expression of clock genes, such as the period circadian clock 2, causing circadian rhythm disruption (CRd) and associated neuropathologies. The present review discusses neuromodulation across the RHT originating from retinal photic inputs and modulation offered by endocannabinoids as a function of mitigation of the CRd and associated neuro-dysfunction. Literature indicates that cannabinoid agonists alleviate the SCN\'s ability to get entrained to light by modulating the activity of its chief neurotransmitter, i.e., γ-aminobutyric acid, thus preventing light-induced disruption of activity rhythms in laboratory animals. In the retina, endocannabinoid signaling modulates the overall gain of the retinal ganglion cells by regulating the membrane currents (Ca2+, K+, and Cl- channels) and glutamatergic neurotransmission of photoreceptors and bipolar cells. Additionally, endocannabinoids signalling also regulate the high-voltage-activated Ca2+ channels to mitigate the retinal ganglion cells and intrinsically photosensitive retinal ganglion cells-mediated glutamate release in the SCN, thus regulating the RHT-mediated light stimulation of SCN neurons to prevent excitotoxicity. As per the literature, cannabinoid receptors 1 and 2 are becoming newer targets in drug discovery paradigms, and the involvement of endocannabinoids in light-induced CRd through the RHT may possibly mitigate severe neuropathologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号