Superior Colliculi

上丘
  • 文章类型: Journal Article
    生理老化过程是众所周知的视觉能力的功能下降。在视觉系统的组成部分中,背侧外侧膝状核(DLG)和上丘(SC)为衰老研究提供了良好的模型,因为这些结构构成了视网膜输入到达视觉皮层的主要视觉途径。然而,在整个生命周期中,DLG和SC的定量形态学和神经化学方面的数据有限。这里,我们使用光密度来确定神经胶质纤维酸性蛋白(GFAP)的免疫表达和基于设计的立体探针来估计神经元数量,总体积,andlayervolumeoftheDLGandSCinmarmosets(Callithrixjacchus),年龄从36个月到143个月不等。我们的结果显示DLG的总体积和层体积与年龄相关的增加,在SC卷的整体稳定性。此外,在DLG和SC(SCv)的浅层中证明了稳定的神经元数量。在两个视觉中心观察到GFAP免疫表达的降低。结果表明体积参数的区域特异性变异性,可能归因于细胞和亚细胞水平的炎症反应和代偿机制的结构性塑性事件。此外,DLG和SCv在神经元数量方面似乎不太容易受到衰老影响。神经肽能数据表明,GFAP表达降低可能反映了星形胶质细胞的形态萎缩。这项研究有助于更新当前对视觉系统中衰老效应的理解,并为未来整个衰老过程中的视觉感知研究奠定了重要基础。
    The physiological aging process is well known for functional decline in visual abilities. Among the components of the visual system, the dorsal lateral geniculate nucleus (DLG) and superior colliculus (SC) provide a good model for aging investigations, as these structures constitute the main visual pathways for retinal inputs reaching the visual cortex. However, there are limited data available on quantitative morphological and neurochemical aspects in DLG and SC across lifespan. Here, we used optical density to determine immunoexpression of glial fibrillary acidic protein (GFAP) and design-based stereological probes to estimate the neuronal number, total volume, and layer volume of the DLG and SC in marmosets (Callithrix jacchus), ranging from 36 to 143 months of age. Our results revealed an age-related increase in total volume and layer volume of the DLG, with an overall stability in SC volume. Furthermore, a stable neuronal number was demonstrated in DLG and superficial layers of SC (SCv). A decrease in GFAP immunoexpression was observed in both visual centers. The results indicate region-specific variability in volumetric parameter, possibly attributed to structural plastic events in response to inflammation and compensatory mechanisms at the cellular and subcellular level. Additionally, the DLG and SCv seem to be less vulnerable to aging effects in terms of neuronal number. The neuropeptidergic data suggest that reduced GFAP expression may reflect morphological atrophy in the astroglial cells. This study contributes to updating the current understanding of aging effects in the visual system and stablishes a crucial foundation for future research on visual perception throughout the aging process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    哺乳动物上丘(SC)的表层包含神经元,这些神经元通常对视觉刺激有反应,但在形态和反应特性上可能有很大差异。为了阐明这些神经元的结构和功能,我们结合了细胞外记录和细胞间标记,详细的解剖重建,和标记神经元的突触接触的超微结构分析,使用透射电子显微镜。我们标记的神经元投射到不同的脑干核。特别重要的是符合宽视野(WF)神经元的形态标准的神经元,其树突是水平取向的。它们向视神经束(NOT)显示出相当特征性的轴突投影模式;因此,我们称它们为向NOT(SCWFNOT)神经元投射的上丘WF。在无监督分层聚类分析的帮助下,我们证实了这种神经元类型的形态特征为独特的神经元类别。我们的超微结构数据表明,SCWFNOT神经元与NOT中的靶标建立了兴奋性连接。虽然,在啮齿动物中,关于WF神经元的文献集中在它们向丘脑外侧后核的广泛投射上,作为信息到达皮层视觉关联区域的管道,我们的数据表明,WF神经元的这个亚类可能参与了视动性眼球震颤。
    The superficial layers of the mammalian superior colliculus (SC) contain neurons that are generally responsive to visual stimuli but can differ considerably in morphology and response properties. To elucidate the structure and function of these neurons, we combined extracellular recording and juxtacellular labeling, detailed anatomical reconstruction, and ultrastructural analysis of the synaptic contacts of labeled neurons, using transmission electron microscopy. Our labeled neurons project to different brainstem nuclei. Of particular importance are neurons that fit the morphological criteria of the wide field (WF) neurons and whose dendrites are horizontally oriented. They display a rather characteristic axonal projection pattern to the nucleus of optic tract (NOT); thus, we call them superior collicular WF projecting to the NOT (SCWFNOT) neurons. We corroborated the morphological characterization of this neuronal type as a distinct neuronal class with the help of unsupervised hierarchical cluster analysis. Our ultrastructural data demonstrate that SCWFNOT neurons establish excitatory connections with their targets in the NOT. Although, in rodents, the literature about the WF neurons has focused on their extensive projection to the lateral posterior nucleus of the thalamus, as a conduit for information to reach the visual association areas of the cortex, our data suggest that this subclass of WF neurons may participate in the optokinetic nystagmus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小胶质细胞是高度动态的细胞,它们在脑实质的迁移和定植是正常脑发育和功能的关键步骤。体外发育的斑马鱼胚胎具有光学透明度,与荧光标记小胶质细胞的特征良好的转基因报道系一起,使斑马鱼成为此类研究的理想脊椎动物模型。在本文中,我们利用斑马鱼模型的独特特征来观察小胶质细胞在体内和生理条件下的动态。我们使用共聚焦显微镜记录斑马鱼胚胎视神经皮层中小胶质细胞的时间流逝,使用IMARIS10.0软件提取跟踪数据以获得细胞迁移路径,平均速度,在不同发育阶段的视神经顶盖中分布。这个协议可以是一个有用的工具来阐明小胶质细胞行为在各种情况下的生理意义,有助于对这些高度活动的细胞进行更深入的表征。
    Microglia are highly dynamic cells and their migration and colonization of the brain parenchyma is a crucial step for proper brain development and function. Externally developing zebrafish embryos possess optical transparency, which along with well-characterized transgenic reporter lines that fluorescently label microglia, make zebrafish an ideal vertebrate model for such studies. In this paper, we take advantage of the unique features of the zebrafish model to visualize the dynamics of microglia cells in vivo and under physiological conditions. We use confocal microscopy to record a timelapse of microglia cells in the optic tectum of the zebrafish embryo and then, extract tracking data using the IMARIS 10.0 software to obtain the cells\' migration path, mean speed, and distribution in the optic tectum at different developmental stages. This protocol can be a useful tool to elucidate the physiological significance of microglia behavior in various contexts, contributing to a deeper characterization of these highly motile cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    恐高的神经基础在很大程度上仍然未知。在这项研究中,我们调查了雄性小鼠对身高的恐惧反应,并观察到类似人类身高眩晕的特征厌恶行为。我们认为视觉输入是小鼠对身高反应的关键因素,而外周前庭输入被发现是不必要的恐高症。出乎意料的是,我们发现,幼稚小鼠的恐高症并不依赖于初级视觉皮层的图像形成视觉处理.相反,腹侧外侧膝状核(vLGN)中的神经元子集,连接到外侧/腹外侧导水管周围灰色(l/vlPAG),驱动与高度相关的恐惧表达。此外,我们观察到,连接上丘和外侧丘脑后核的皮层下视觉通路抑制了对身高威胁的防御反应。这些发现强调了通过从vLGN到l/vlPAG的皮层下视觉和防御途径对身高威胁的快速恐惧反应。
    The neural basis of fear of heights remains largely unknown. In this study, we investigated the fear response to heights in male mice and observed characteristic aversive behaviors resembling human height vertigo. We identified visual input as a critical factor in mouse reactions to heights, while peripheral vestibular input was found to be nonessential for fear of heights. Unexpectedly, we found that fear of heights in naïve mice does not rely on image-forming visual processing by the primary visual cortex. Instead, a subset of neurons in the ventral lateral geniculate nucleus (vLGN), which connects to the lateral/ventrolateral periaqueductal gray (l/vlPAG), drives the expression of fear associated with heights. Additionally, we observed that a subcortical visual pathway linking the superior colliculus to the lateral posterior thalamic nucleus inhibits the defensive response to height threats. These findings highlight a rapid fear response to height threats through a subcortical visual and defensive pathway from the vLGN to the l/vlPAG.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为基因表达网络的重要组成部分,转录因子调节神经回路组装。同源异型盒转录因子编码基因,gshomeobox1(gsx1),在发展中的视觉系统中表达;然而,目前还没有研究探讨其在视觉系统形成中的作用。在斑马鱼中,将视觉信息传输到大脑的视网膜神经节细胞(RGC)轴突终止于视神经顶盖(TeO)的十个树枝状区域(AF),pretectum(Pr),还有丘脑.前盖AF(AF1-AF9)介导不同的视觉行为,然而,与TeO中的AF10相比,我们对它们的发展了解更少。使用gsx1斑马鱼突变体,免疫组织化学,和转基因品系,我们观察到gsx1是囊泡谷氨酸转运体所必需的,Tg(slc17a6b:DsRed),Pr中的表达式,但不是总的神经元数量。gsx1突变体具有正常的眼睛形态,然而,它们在捕获猎物时表现出视觉能力受损。gsx1突变体Pr和TeO中的RGC轴突体积减少,在进食过程中活跃的AF7缺失,这与狩猎性能降低一致。Tg(slc17a6b:DsRed)阳性细胞的定时激光烧蚀显示它们对于AF7形成是必需的。这项工作是第一个暗示gsx1在视觉系统中建立细胞身份和功能神经回路的工作。
    As essential components of gene expression networks, transcription factors regulate neural circuit assembly. The homeobox transcription factor encoding gene, gs homeobox 1 (gsx1), is expressed in the developing visual system; however, no studies have examined its role in visual system formation. In zebrafish, retinal ganglion cell (RGC) axons that transmit visual information to the brain terminate in ten arborization fields (AFs) in the optic tectum (TeO), pretectum (Pr), and thalamus. Pretectal AFs (AF1-AF9) mediate distinct visual behaviors, yet we understand less about their development compared to AF10 in the TeO. Using gsx1 zebrafish mutants, immunohistochemistry, and transgenic lines, we observed that gsx1 is required for vesicular glutamate transporter, Tg(slc17a6b:DsRed), expression in the Pr, but not overall neuron number. gsx1 mutants have normal eye morphology, yet they exhibit impaired visual ability during prey capture. RGC axon volume in the gsx1 mutant Pr and TeO is reduced, and AF7 that is active during feeding is missing which is consistent with reduced hunting performance. Timed laser ablation of Tg(slc17a6b:DsRed)-positive cells reveals that they are necessary for AF7 formation. This work is the first to implicate gsx1 in establishing cell identity and functional neural circuits in the visual system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    皮层下通路被认为是为了促进恐惧信息的传播而进化的,但是缺乏它在人类中存在的直接证据。近年来,快速,预先注意,前意识的恐惧处理已经被证明,通过挑战恐惧处理中规范皮层途径的必要性,为皮层下途径的存在提供间接支持。然而,直接支持还需要皮质下区域参与恐惧处理的证据.为了解决这个问题,在这里,我们研究恐惧处理是否反映了假设的皮层下通路中皮层下结构的特征。使用单目/双目范式,实验1展示了恐惧但不中性面部处理的同眼优势,这表明恐惧处理依赖于主要存在于皮质下的单眼神经元。实验2和3进一步显示了对短波长刺激的不敏感和恐惧处理中的鼻-颞半场不对称性,两者都是上丘的功能特征,皮层下通路的关键枢纽.此外,所有三个实验都揭示了恐惧处理的低空间频率选择性,与通过皮质下神经元的大细胞输入一致。这些结果表明,皮质下结构选择性地参与了恐惧处理,which,以及自动处理恐惧的间接证据,提供了一个更完整的图像的存在的皮层下途径的恐惧处理在人类。(PsycInfo数据库记录(c)2024APA,保留所有权利)。
    A subcortical pathway is thought to have evolved to facilitate fear information transmission, but direct evidence for its existence in humans is lacking. In recent years, rapid, preattentive, and preconscious fear processing has been demonstrated, providing indirect support for the existence of the subcortical pathway by challenging the necessity of canonical cortical pathways in fear processing. However, direct support also requires evidence for the involvement of subcortical regions in fear processing. To address this issue, here we investigate whether fear processing reflects the characteristics of the subcortical structures in the hypothesized subcortical pathway. Using a monocular/dichoptic paradigm, Experiment 1 demonstrated a same-eye advantage for fearful but not neutral face processing, suggesting that fear processing relied on monocular neurons existing mainly in the subcortex. Experiments 2 and 3 further showed insensitivity to short-wavelength stimuli and a nasal-temporal hemifield asymmetry in fear processing, both of which were functional characteristics of the superior colliculus, a key hub of the subcortical pathway. Furthermore, all three experiments revealed a low spatial frequency selectivity of fear processing, consistent with magnocellular input via subcortical neurons. These results suggest a selective involvement of subcortical structures in fear processing, which, together with the indirect evidence for automatic fear processing, provides a more complete picture of the existence of a subcortical pathway for fear processing in humans. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    初级视觉皮层(V1)和上丘(SC)都在视觉信息处理的早期占据位置。长期以来,人们一直认为它们具有不同的功能,V1支持对视觉特征的感知,而SC调节则指向视觉输入。然而,越来越多的证据表明,SC支持对传统上与V1相关的许多相同视觉特征的感知。为了区分V1和SC对视觉处理的贡献,确定这两个区域是否对特定视觉刺激的检测有因果关系是至关重要的。这里,当将光遗传学刺激的白噪声模式传递到V1或SC抑制性神经元时,小鼠报告视觉对比度或亮度的变化接近其感知阈值。然后,我们对光遗传刺激进行了逆相关分析,以估计神经元行为内核(NBK)。V1或SC抑制对刺激检测的影响的时刻估计。我们表明,SC中刺激诱发活动的最早时刻对于检测亮度和对比度变化至关重要。引人注目的是,在V1对比度检测NBK中存在强大的刺激对齐调制,但没有用于亮度检测的可比调制的迹象。数据表明,视觉对比度的行为检测取决于V1和SC尖峰,而小鼠优先使用SC活性来检测亮度的变化。电生理记录显示,SC和V1中的神经元对两种视觉刺激类型都有强烈的反应,而逆相关分析揭示了这些神经元信号何时实际上有助于视觉引导行为。
    The primary visual cortex (V1) and the superior colliculus (SC) both occupy stations early in the processing of visual information. They have long been thought to perform distinct functions, with the V1 supporting the perception of visual features and the SC regulating orienting to visual inputs. However, growing evidence suggests that the SC supports the perception of many of the same visual features traditionally associated with the V1. To distinguish V1 and SC contributions to visual processing, it is critical to determine whether both areas causally contribute to the detection of specific visual stimuli. Here, mice reported changes in visual contrast or luminance near their perceptual threshold while white noise patterns of optogenetic stimulation were delivered to V1 or SC inhibitory neurons. We then performed a reverse correlation analysis on the optogenetic stimuli to estimate a neuronal-behavioral kernel (NBK), a moment-to-moment estimate of the impact of V1 or SC inhibition on stimulus detection. We show that the earliest moments of stimulus-evoked activity in the SC are critical for the detection of both luminance and contrast changes. Strikingly, there was a robust stimulus-aligned modulation in the V1 contrast-detection NBK but no sign of a comparable modulation for luminance detection. The data suggest that behavioral detection of visual contrast depends on both V1 and SC spiking, whereas mice preferentially use SC activity to detect changes in luminance. Electrophysiological recordings showed that neurons in both the SC and V1 responded strongly to both visual stimulus types, while the reverse correlation analysis reveals when these neuronal signals actually contribute to visually guided behaviors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    上丘(SC)是所有脊椎动物中突出且保守的视觉中心。在老鼠身上,SC的最浅层富含对视觉刺激的移动方向具有选择性的神经元。在这里,我们研究了这些方向选择性神经元如何对复杂的运动模式做出反应,在清醒的雄性和雌性小鼠中使用双光子钙成像。格子图案由两个沿不同方向移动的叠加正弦光栅组成,给出位于两个分量光栅的方向之间的明显图案方向。小鼠SC中的大多数方向选择性神经元对格子的反应强烈,并且对格子图案的移动方向具有很高的选择性,但对其组成部分没有选择性。在兴奋性和抑制性SC神经元中都可以看到模式运动选择性,并且在响应两个分量光栅之间具有大交叉角的格子时尤其普遍。然而,对SC的视网膜输入在它们对模式与分量运动的选择性方面是不明确的。建模表明,SC中的模式运动选择性可能来自会聚视网膜输入的非线性变换。相比之下,在初级视觉皮层(V1)中未发现模式运动选择性神经元的普遍性。这些结果证明了SC和V1在运动处理中的有趣差异,并揭示了SC作为编码模式运动的重要部位。重要性陈述视觉系统的一个重要功能是对环境中复杂运动模式的方向进行编码。使用格子刺激的研究表明,不同皮质区域的神经元被调整为模式运动或分量运动,但是SC中的神经元对格子的反应还没有研究。在这里,我们显示了小鼠SC中的方向选择性神经元以清晰的模式运动选择性响应格子,在视网膜或V1中看不到的水平。因此,我们的结果提供了有关早期视觉系统功能和组织的新信息,并强调了SC电路在计算复杂运动中的重要性。
    The superior colliculus (SC) is a prominent and conserved visual center in all vertebrates. In mice, the most superficial lamina of the SC is enriched with neurons that are selective for the moving direction of visual stimuli. Here, we study how these direction selective neurons respond to complex motion patterns known as plaids, using two-photon calcium imaging in awake male and female mice. The plaid pattern consists of two superimposed sinusoidal gratings moving in different directions, giving an apparent pattern direction that lies between the directions of the two component gratings. Most direction selective neurons in the mouse SC respond robustly to the plaids and show a high selectivity for the moving direction of the plaid pattern but not of its components. Pattern motion selectivity is seen in both excitatory and inhibitory SC neurons and is especially prevalent in response to plaids with large cross angles between the two component gratings. However, retinal inputs to the SC are ambiguous in their selectivity to pattern versus component motion. Modeling suggests that pattern motion selectivity in the SC can arise from a nonlinear transformation of converging retinal inputs. In contrast, the prevalence of pattern motion selective neurons is not seen in the primary visual cortex (V1). These results demonstrate an interesting difference between the SC and V1 in motion processing and reveal the SC as an important site for encoding pattern motion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管视觉是许多动物的基本感觉,视觉系统由环境光条件塑造的直观吸引人的观点没有足够的证据支持。基于对鸟类的全面系统发育比较分析,我们调查暴露在不同的光条件下是否可能通过对光敏感度的压力引发视觉系统的进化发散,视敏度,和神经处理能力。我们的分析表明,采用夜间习性的鸟类进化出具有较大角膜直径的眼睛,在较小程度上,轴长比昼夜物种长。然而,我们没有发现证据表明传感和加工器官是一起选择的,在昼夜鸟类中观察到的。与其扩大加工中心,我们发现夜间活动的物种倾向于减少或维持与视觉有关的两个主要大脑中心的大小-视顶盖和Wulst。这些结果表明了进化的马赛克模式,其中用于夜间物种中的有效光捕获的眼睛光学器件的优化可能具有损害的视敏度和中央处理能力。
    Despite vision being an essential sense for many animals, the intuitively appealing notion that the visual system has been shaped by environmental light conditions is backed by insufficient evidence. Based on a comprehensive phylogenetic comparative analysis of birds, we investigate if exposure to different light conditions might have triggered evolutionary divergence in the visual system through pressures on light sensitivity, visual acuity, and neural processing capacity. Our analyses suggest that birds that have adopted nocturnal habits evolved eyes with larger corneal diameters and, to a lesser extent, longer axial length than diurnal species. However, we found no evidence that sensing and processing organs were selected together, as observed in diurnal birds. Rather than enlarging the processing centers, we found a tendency among nocturnal species to either reduce or maintain the size of the two main brain centers involved in vision-the optic tectum and the wulst. These results suggest a mosaic pattern of evolution, wherein optimization of the eye optics for efficient light capture in nocturnal species may have compromised visual acuity and central processing capacity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号