Supercapacitors

超级电容器
  • 文章类型: Journal Article
    如今,由于对设备的新技术和工业要求,如灵活性或多功能,发展全固态超级电容器和锂离子电池已成为研究人员的目标。出于这些目的,由于编织碳纤维作为这种材料的基底材料的有前途的特征,复合材料方法已被广泛提出。碳纤维显示出优异的机械性能,灵活性,和高导电性,允许它同时充当衬底和收集器。然而,碳纤维的储能能力是有限的。已经为此提出了几种涂层,纳米结构过渡金属氧化物由于其高理论容量和表面积而成为最受欢迎的过渡金属氧化物之一。在本概述中,用于实现这些涂层的主要技术,如溶剂热合成,MOF派生的obtention,和电化学沉积-进行了总结,以及缓解过渡金属氧化物低电导率的主要策略,这是这些材料的主要缺点。
    Nowadays, owing to the new technological and industrial requirements for equipment, such as flexibility or multifunctionally, the development of all-solid-state supercapacitors and Li-ion batteries has become a goal for researchers. For these purposes, the composite material approach has been widely proposed due to the promising features of woven carbon fiber as a substrate material for this type of material. Carbon fiber displays excellent mechanical properties, flexibility, and high electrical conductivity, allowing it to act as a substrate and a collector at the same time. However, carbon fiber\'s energy-storage capability is limited. Several coatings have been proposed for this, with nanostructured transition metal oxides being one of the most popular due to their high theoretical capacity and surface area. In this overview, the main techniques used to achieve these coatings-such as solvothermal synthesis, MOF-derived obtention, and electrochemical deposition-are summarized, as well as the main strategies for alleviating the low electrical conductivity of transition metal oxides, which is the main drawback of these materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本文研究的重点是分析二硫化钼在超级电容器的混溶性聚(甲基丙烯酸甲酯)-聚(乳酸)共混物上的电化学性能。二硫化钼与混溶性聚(甲基丙烯酸甲酯)-聚(乳酸)共混物之间的相互作用,对水的亲和力,表面形态,并通过傅里叶变换红外光谱检测力学性能,水接触角,扫描电子显微镜,和万能试验机,分别。在发达的膜中,0.75wt%的二硫化钼在聚(甲基丙烯酸甲酯)-聚(乳酸)上显示出更好的电化学性能。在1.00mAg-1的电流密度下,其最大比电容为255.5Fg-1,最大能量密度为22.7Whkg-1,最大功率密度为360Wkg-1。循环研究揭示了在2500次循环后92%的电容保留。设计的超级电容器器件在0.5μAg-1的电流密度下显示出1240μFg-1的最大比电容,43μWhkg-1的最大能量密度和700μWkg-1的最大功率密度。二硫化钼柔性膜有望成为超级电容器应用的有效组合。
    The focus of the study in this article is analyzing the electrochemical properties of molybdenum disulfide on miscible poly(methyl methacrylate)-poly(lactic acid) blends for supercapacitors. The interaction between molybdenum disulfide and miscible poly(methyl methacrylate)-poly(lactic acid) blends, affinity toward water, surface morphology, and mechanical properties are inspected by Fourier transform infrared spectroscopy, water contact angle, scanning electron microscopy, and universal testing machine, respectively. Among the developed membranes, 0.75 wt% of molybdenum disulfide on poly(methyl methacrylate)-poly(lactic acid) shows better electrochemical performances. It exhibits a maximum specific capacitance of 255.5 F g-1 at a current density of 1.00 mA g-1, maximum energy density of 22.7 Wh kg-1, and maximum power density of 360 W kg-1. A cycle study reveals 92% capacitance retention after 2500 cycles. The designed supercapacitor device shows a maximum specific capacitance of 1240 μF g-1 at a current density of 0.5 μA g-1, maximum energy density of 43 μWh kg-1, and maximum power density of 700 μW kg-1. Flexible membranes of molybdenum disulfide are expected to be a potent combination for supercapacitor applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超级电容器(SC)被广泛认为是用于能量存储的竞争性电源。封装在石墨烯纳米片(NVS/G)上的镍钒硫化物纳米颗粒的层次结构是使用具有成本效益且可扩展的溶剂热法制造的。探索并优化了复合材料的反应含量。TEM图像显示了具有20-30nm平均尺寸锚定到石墨烯纳米片的硫化镍钒纳米颗粒(NVSNP)。封装NVS纳米颗粒的石墨烯纳米片的互连有效地减少了电极和电解质之间的离子扩散路径,从而提高电化学性能。NVS/G复合材料表现出改善的电化学性能,在1Ag-1时实现最大1437Fg-1的比电容,在20Ag-1时保持1050Fg-1的显着倍率能力,以及出色的循环稳定性,在10,000次循环后保持91.2%的电容。NVS/G复合材料用作阴极,和还原的氧化石墨烯(rGO)被用作阳极材料以组装器件。重要的是,使用NVS/G//rGO的非对称SC在0.8kWkg-1功率密度下实现了74.7Whkg-1的能量密度,在10,000次循环后,具有88.2%的电容保持率,具有出色的稳定性。NVS/G电极的这些优异性能突出了其在储能应用中的巨大潜力。
    Supercapacitors (SCs) are widely recognized as competitive power sources for energy storage. The hierarchical structure of nickel vanadium sulfide nanoparticles encapsulated on graphene nanosheets (NVS/G) was fabricated using a cost-effective and scalable solvothermal process. The reaction contents of the composites were explored and optimized. TEM images displayed the nickel vanadium sulfide nanoparticles (NVS NPs) with 20-30 nm average size anchored to graphene nanosheets. The interconnection of graphene nanosheets encapsulating NVS nanoparticles effectively reduces the ion diffusion path between the electrode and electrolyte, thereby enhancing electrochemical performance. The NVS/G composite demonstrated improved electrochemical performance, achieving a maximum of 1437 F g-1 specific capacitance at 1 A g-1, remarkable rate capability retaining of 1050 F g-1 at 20 A g-1, and exceptional cycle stability with 91.2% capacitance retention following 10,000 cycles. The NVS/G composite was employed as a cathode, and reduced graphene oxide (rGO) was used as an anode material to assemble a device. Importantly, asymmetric SCs using NVS/G//rGO achieved 74.7 W h kg-1 energy density at 0.8 kW kg-1 power density, along with outstanding stability with 88.2% capacitance retention following 10,000 cycles. These superior properties of the NVS/G electrode highlight its significant potential in energy storage applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    金属有机骨架(MOFs)和MXenes在先进材料研究的队列中占有重要地位。这两种材料突出的物理和化学特性突出地促进了它们在不同领域的利用,尤其是电化学储能(EES)领域。极高的比表面积(SSA)的集体贡献,可定制的毛孔,和丰富的活性位点提出MOFs作为EES设备的整体材料。然而,传统的MOFs承受低电导率,限制了它们在实际应用中的效用。通过将MOFs与各种导电材料集成在一起开发混合材料是提高MOF导电性的有效途径。MXenes,配制为过渡金属的二维(2D)碳化物和氮化物,属于最新的2D材料类别。MXenes具有广泛的结构多样性,令人印象深刻的导电性,和丰富的表面化学特性。MOF@MXene杂化的电化学特性分别优于MOF和MXenes,归功于这两个组成部分的协同作用。此外,与MXene偶联的MOF衍生物,表现出独特的形态,表现出优异的电化学性能。MOF@MXene杂种的重要属性,包括各种合成方案,在这篇综述中进行了总结。这篇综述深入研究了MOF和MXenes的架构分析,以及他们先进的混合动力车。此外,对MOF@MXene杂化作为超级电容器(SC)的电活性材料的最新进展的全面调查是这篇综述的主要目标。本综述最后详细讨论了当前面临的挑战以及优化MOF@MXene复合材料的未来前景。
    Metal-organic frameworks (MOFs) and MXenes have gained prominence in the queue of advanced material research. Both materials\' outstanding physical and chemical characteristics prominently promote their utilization in diverse fields, especially the electrochemical energy storage (EES) domain. The collective contribution of extremely high specific surface area (SSA), customizable pores, and abundant active sites propose MOFs as integral materials for EES devices. However, conventional MOFs endure low conductivity, constraining their utility in practical applications. The development of hybrid materials via integrating MOFs with various conductive materials stands out as an effective approach to improvising MOF\'s conductivity. MXenes, formulated as two-dimensional (2D) carbides and nitrides of transition metals, fall in the category of the latest 2D materials. MXenes possess extensive structural diversity, impressive conductivity, and rich surface chemical characteristics. The electrochemical characteristics of MOF@MXene hybrids outperform MOFs and MXenes individually, credited to the synergistic effect of both components. Additionally, the MOF derivatives coupled with MXene, exhibiting unique morphologies, demonstrate outstanding electrochemical performance. The important attributes of MOF@MXene hybrids, including the various synthesis protocols, have been summarized in this review. This review delves into the architectural analysis of both MOFs and MXenes, along with their advanced hybrids. Furthermore, the comprehensive survey of the latest advancements in MOF@MXene hybrids as electroactive material for supercapacitors (SCs) is the prime objective of this review. The review concludes with an elaborate discussion of the current challenges faced and the future outlooks for optimizing MOF@MXene composites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项工作中,通过简单的水热过程有效地制备了β-NiS纳米颗粒(NPs)。这些NiSNP之间的形态差异是通过添加不同量的硫脲而产生的,相应的产物表示为NiS-15和NiS-5。通过电化学测试,NiS-15的比容量(Cs)在1Ag-1时为638.34Cg-1,而NiS-5为558.17Cg-1。为了探索这种β-NiSNP在超级电容器中的实际应用潜力,以活性炭(AC)为阳极组装了混合型超级电容器(HSC)装置。得益于NiS阴极的高容量和器件的大电压窗口,NiS-15//ACHSC在936.92Wkg-1时显示出43.57Whkg-1的高能量密度(Ed),而NiS-5//ACHSC在954.79Wkg-1时提供了37.89Whkg-1的较差Ed。两种HSC在10μg-1下在6000个循环中显示出优异的循环性能。实验结果表明,这项研究中的NiS-15和NiS-5都可以作为高性能超级电容器的潜在阴极。这种目前的合成方法简单,可以扩展到制备其他具有优异电化学性能的过渡金属硫化物(TMS)基电极材料。
    In this work, β-NiS nanoparticles (NPs) were efficiently prepared by a straightforward hydrothermal process. The difference in morphology between these NiS NPs was produced by adding different amounts of thiourea, and the corresponding products were denoted as NiS-15 and NiS-5. Through electrochemical tests, the specific capacity (Cs) of NiS-15 was determined to be 638.34 C g-1 at 1 A g-1, compared to 558.17 C g-1 for NiS-5. To explore the practical application potential of such β-NiS NPs in supercapacitors, a hybrid supercapacitor (HSC) device was assembled with activated carbon (AC) as an anode. Benefitting from the high capacity of the NiS cathode and the large voltage window of the device, the NiS-15//AC HSC showed a high energy density (Ed) of 43.57 W h kg-1 at 936.92 W kg-1, and the NiS-5//AC HSC provided an inferior Ed of 37.89 W h kg-1 at 954.79 W kg-1. Both HSCs showed excellent cycling performance over 6000 cycles at 10 A g-1. The experimental findings suggest that both NiS-15 and NiS-5 in this study can serve as potential cathodes for high-performance supercapacitors. This current synthesis method is simple and can be extended to the preparation of other transition metal sulfide (TMS)-based electrode materials with exceptional electrochemical properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    木质素作为一种天然的生物聚合物正变得越来越需要由于其生态友好的性质,而具有高导电性和可靠耐久性的木质素基电解质在超级电容器中的应用仍然具有挑战性。在这里,提出了一种通过化学交联反应制备木质素纳米颗粒(LNPs)基固体电解质薄膜(LF)的简便方法。制造的LF表现出独特的海绵状多孔结构,离子电导率为3.26mScm-1,证明了出色的柔韧性和良好的机械性能。此外,首次使用LF电解质和LCA电极实现了基于全LNP的对称超级电容器(SSC)器件的组装,证实LF3电解质在电容性能方面优于商业纤维素隔膜。该SSC装置在0.5Ag-1时的比电容为122.7Fg-1,最大能量密度为17.04Whkg-1。此外,海藻酸钠(SA)的掺入显著提高了SA/LF3电解质的离子电导率,所得SSC装置在0.5Ag-1时提供了更高的比电容174.5Fg-1,最大能量和功率密度分别为24.24Whkg-1和5023Wkg-1。这项研究提出了一种在储能应用中可持续利用木质素的有前途的方法。
    Lignin as a natural biopolymer is becoming increasingly in demand due to its eco-friendly properties, while lignin-based electrolyte with high conductivity and reliable durability for applications in supercapacitors is still challenging. Herein, a facile method to prepare lignin nanoparticles (LNPs)-based solid electrolyte thin film (LF) was proposed through chemical cross-linking reaction. The fabricated LF exhibited a distinctive spongy porous structure with the ionic conductivity of 3.26 mS cm-1, demonstrating the exceptional flexibility and favorable mechanical properties. Moreover, the assembly of all-LNPs-based symmetric supercapacitor (SSC) devices was achieved using LF electrolyte and LCA electrodes for the first time, confirming the LF3 electrolyte superior to commercial cellulose separator in capacitive behaviour. This SSC device exhibited a specific capacitance of 122.7 F g-1 at 0.5 A g-1 and the maximum energy density of 17.04 W h kg-1. Furthermore, the incorporation of sodium alginate (SA) significantly enhanced the ionic conductivity of SA/LF3 electrolyte, and the resulting SSC device delivered a higher specific capacitance of 174.5 F g-1 at 0.5 A g-1 and the maximum energy and power densities of 24.24 W h kg-1 and 5023 W kg-1, respectively. This study proposes a promising approach for sustainable utilization of lignin in energy storage applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    恒定电势下的分子动力学(MD)模拟是研究电化学过程的重要工具,提供结构的微观信息,热力学,和动力学属性。尽管在电极模拟方面取得了许多进展,它们不能准确地表示石墨等材料的电子结构。在这项工作中,介绍了一种简单的参数化方法,该方法可以基于态密度(DOS)的量子化学计算来调节电极的金属性。作为第一个例子,石墨电极和两种不同液体电解质之间的界面,NaCl水溶液和纯离子液体,在不同的施加电位进行了研究。结果表明,模拟定性地再现了实验测量的电容;特别是,它们在零电荷点(PZC)产生最小的电容,这是由于量子电容(QC)的贡献。对吸附液体的结构的分析允许理解为什么尽管离子液体具有大的离子浓度,但离子液体仍显示较低的电容。除了与重要的碳质电极相关外,这种方法可以应用于任何电极材料(例如2D材料,导电聚合物,etc),从而使分子模拟研究复杂的电化学装置在未来。
    Molecular dynamics (MD) simulations at a constant electric potential are an essential tool to study electrochemical processes, providing microscopic information on the structural, thermodynamic, and dynamical properties. Despite the numerous advances in the simulation of electrodes, they fail to accurately represent the electronic structure of materials such as graphite. In this work, a simple parameterization method that allows to tune the metallicity of the electrode based on a quantum chemistry calculation of the density of states (DOS) is introduced. As a first illustration, the interface between graphite electrodes and two different liquid electrolytes, an aqueous solution of NaCl and a pure ionic liquid, at different applied potentials are studied. It is shown that the simulations reproduce qualitatively the experimentally-measured capacitance; in particular, they yield a minimum of capacitance at the point of zero charge (PZC), which is due to the quantum capacitance (QC) contribution. An analysis of the structure of the adsorbed liquids allows to understand why the ionic liquid displays a lower capacitance despite its large ionic concentration. In addition to its relevance for the important class of carbonaceous electrodes, this method can be applied to any electrode materials (e.g. 2D materials, conducting polymers, etc), thus enabling molecular simulation studies of complex electrochemical devices in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用多孔碳材料的超级电容器和混合锌离子电容器(ZIC)中的储能为清洁能源解决方案提供了一种替代方法。这些材料中分层多孔结构和氮掺杂的独特组合已经证明了显著的能量储存能力。然而,这些材料的全部潜力,特别是孔隙结构构型与性能之间的关系,仍未充分开发。在这里,基于聚多巴胺(PDA)的聚合特性,开发了一种有限的热解策略,以构建具有微孔/介孔双壳结构的中空碳球。可以通过调整热处理和水热处理的持续时间来控制微孔和空腔的深度,依照PDA的分解和聚合特征。由于这种结构的弹性,建立了制备的碳球的微/介孔深度与超级电容器和ZIC中的储能性能之间的关系。通过优化碳球的离子输运能力,并考虑其内腔结构对储能的影响,所得碳球在超级电容器中表现出389Fg-1的高比电容和260Fg-1的比电容,并且在ZIC中在30000次chare/放电循环后具有99.3%的保留率。
    Energy storage in supercapacitors and hybrid zinc ion capacitors (ZIC) using porous carbon materials offers a promsing alternative method for clean energy solutions. The unique combination of hierarchical porous structure and nitrogen doping in these materials has demonstrated significant capacity for energy storage. Nevertheless, the full potential of these materials, particularly the relationship between pore structure configuration and performance, remains underexplored. Herein, a confined pyrolysis strategy based on the polymerization characteristics of polydopamine (PDA) was developed to construction of hollow carbon spheres with microporous/mesoporous dual shell structure. The depth of micropores and cavity can be controlled by adjusting the duration of heat treatment and hydrothermal treatment, in accordance with the decomposition and polymerization characteristics of PDA. Due to the elasticity of this structure, the relationship between the micro/mesoporous depth of the prepared carbon spheres and the energy storage performance in supercapacitors and ZIC is established. Through optimizing the ion transport capacity of carbon spheres and considering the influence of its internal cavity structure on energy storage, the resulting carbon spheres exhibit high specific capacitance of 389 F g-1 in supercapacitor and specific capacitance of 260 F g-1 and excellent stability with 99.3% retention after 30000 chare/discharge cycles in ZIC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    MXene由于其高电子电导率和可编辑的表面化学性质而吸引了对电化学储能的日益增长的兴趣。此外,渲染MXenes具有光谱防御特性,进一步拓宽了其通用应用。然而,MXenes的发展受到范德华相互作用驱动的自重堆的影响,导致随机对齐和较差的界面微环境。在这里,由2-脲基-4[1H]-嘧啶酮(UPy)改性的聚乙烯醇(PVA-UPy)和碳纳米管(CNT)的双重填充来定制珍珠质启发的MXene膜。双纳米填料工程赋予纳米复合薄膜高度有序的结构(Herman的有序值为0.838),高机械强度(139.5MPa),以及ab平面和c轴的连续导电通路。作为一个概念证明,定制的纳米复合材料薄膜实现了508.2Fcm-3的相当大的电容和长期循环稳定性,而没有性能下降10.000次循环。对于雷达和红外波段的光谱防御是有效的,显示高电磁屏蔽能力(19186dBcm2g-1)和超低红外(IR)发射率(0.16),在空气中保存1年后,性能衰减可以忽略不计,负责在特定和复杂条件下的应用。这种界面双填料工程概念展示了有效的纳米技术,以长寿命和安全性实现可持续能源应用。
    MXenes have attracted growing interest in electrochemical energy storage owing to their high electronic conductivity and editable surface chemistry. Besides, rendering MXenes with spectrum defense properties further broadens their versatile applications. However, the development of MXenes suffers from weak van der Waal interaction-driven self-restacking that leads to random alignment and inferior interface microenvironments. Herein, a nacre-inspired MXene film is tailored by dual-filling of 2-ureido-4[1H]-pyrimidinone (UPy)-modified polyvinyl alcohol (PVA-UPy) and carbon nanotubes (CNTs). The dual-nanofillers engineering endows the nanocomposite film with a highly ordered structure (a Herman\'s order value of 0.838), a high mechanical strength (139.5 MPa), and continuous conductive pathways of both the ab plane and c-axis. As a proof-of-concept, the tailored nanocomposite film achieves a considerable capacitance of 508.2 F cm-3 and long-term cycling stability without performance degradation for 10 000 cycles. It is efficient for spectra defense in radar and infrared bands, displaying a high electromagnetic shielding capacity (19186 dB cm2 g-1) and a super-low infrared (IR) emissivity (0.16), with negligible performance decay after saving in the air for 1 year, responsible for the applications in specific and complex conditions. This interfacial dual-filler engineering concept showcases effective nanotechnology toward sustainable energy applications with a long lifetime and safety.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用铵离子(NH4)作为电荷载体(NH4-SC)的超级电容器(SC)引起了人们的持续关注,并且钒基材料被证明具有高效的NH4存储性能。单斜二氧化钒,VO2(B),作为应用于SC的阳极材料很少有报道,并且调节其电子结构以增强NH4-存储充满挑战。在这项工作中,设计并合成了钼掺杂的VO2(B)(Mo掺杂的VO2(B))以增强其NH4存储。将Mo原子引入到VO2(B)的晶体结构中可以调节其晶体结构并带来一些缺陷。实验结果表明,掺杂2%Mo的掺杂Mo的VO2(B)显示出最佳的电化学性能。Mo掺杂的VO2(B)在0.1Ag-1时达到1403Fg-1(390mAhg-1)的比电容,在5000次循环后的电容保持率约为98%,优于VO2(B)(893Fg-1,0.1Ag-1时248mAhg-1和60%的电容保持率。由Mo掺杂的VO2(B)和活性炭组装的混合超级电容器(HSC)在208.3Wkg-1的功率密度下具有38.6Whkg-1的能量密度,具有良好的电化学性能。这项工作证明了Mo掺杂是增强VO2(B)的NH4存储的有效策略,该策略就像中国成语“像为老虎增加翅膀”一样,以指导电极材料的设计高效NH4存储。
    Supercapacitors (SCs) using ammonium-ion (NH4+) as the charge carrier (NH4+-SCs) have attracted continuous attention and vanadium-based materials are proved to have high-efficient NH4+-storage properties. Monoclinic vanadium dioxide, VO2(B), as an anode material applied to SCs has been rarely reported and modulating its electronic structure for boosted NH4+-storage is full of challenge. In this work, molybdenum-doped VO2(B) (Mo-doped VO2(B)) is designed and synthesize to enhance its NH4+-storage. The introduction of Mo atom into the crystal structure of VO2(B) can modulate its crystal structure and bring in some defects. Experimental results manifest that Mo-doped VO2(B) with 2 % Mo-doping shows the best electrochemical properties. Mo-doped VO2(B) achieves the specific capacitance of 1403 F g-1 (390 mAh g-1) at 0.1 A g-1 and the capacitance retention of about 98 % after 5000 cycle, superior to that of VO2(B) (893 F g-1, 248 mAh g-1 at 0.1 A g-1 and 60 % capacitance retention. The hybrid supercapacitor (HSC) assembled by Mo-doped VO2(B) and active carbon delivers good electrochemical performance with the energy density of 38.6 Wh kg-1 at power density of 208.3 W kg-1. This work proves that the Mo-doping is an efficient strategy for boosted NH4+-storage of VO2(B) and this strategy is like a Chinese idiom \"like adding wings to a tiger\" to guide the design of electrode materials for high-efficient NH4+-storage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号