Supercapacitor

超级电容器
  • 文章类型: Journal Article
    考虑到电池和超级电容器的全球市场,在电解质配方中,用生物基碳酸盐(部分或全部)替代常规化石衍生的碳酸盐将允许生产更安全和更可持续的设备。在这项工作中,拥抱绿色化学的第七个原则,将甘油衍生物(即碳酸甘油酯和碳酸索缩酮酯)作为电解质制剂的溶剂和添加剂进行测试。碳酸甘油酯被创新地用作具有优异性能的双电层电容器的有前途的电解质溶剂。另一方面,研究了钾基电池的含solketal碳酸盐的液体电解质,显示出相当稳定的电化学行为和性能,接近商业石油衍生替代品。
    Considering the worldwide market of batteries and supercapacitors, the (partial or total) replacement of conventional fossil-derived carbonates with bio-based ones in electrolyte formulations would allow the production of safer and more sustainable devices. In this work, embracing the 7th principle of green chemistry, glycerol derivatives (namely glycerol carbonate and solketal carbonate) are tested as solvents and additives for electrolyte formulations. Glycerol carbonate is innovatively employed as promising electrolyte solvent for electric double-layer capacitors with excellent performances. On the other hand, a solketal carbonate-laden liquid electrolyte is investigated for potassium-based batteries, showing a rather stable electrochemical behaviour and performance close to those of commercial oil-derived alternatives.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这里,从开心果壳废物中通过KOH活化获得的分级介孔活性炭颗粒通过磺化工艺和通过水热加热掺杂CuO(CuO@S掺杂PSAC)进行改性,用作超级电容器。预测通过这种CuO掺杂和磺化过程获得的多孔碳电极材料的电化学性能将随着法拉第电容的增加而显著提高。通过电化学阻抗谱(EIS)系统研究了CuO@S掺杂PSAC复合材料的电化学性能,循环伏安法(CV),和在1MH2SO4,1MNa2SO4和1MNaOH作为电解质存在下的恒电流充电/放电(GCD)。基于CuO@S的掺杂PSAC的电极显示出优异的稳定性,在0.1A/g下具有高达397.16F/g的高比电容和92.64%的保留率。此外,FTIR,SEM,XRD,EDS,和氮气吸附/解吸分析用于表征获得的复合材料。基于显著的超级电容器性能,从农业生物质废料中提取的含磺化和CuO改性的碳基电极材料的合成策略被认为是一个有价值的例子。
    Here, the hierarchical mesoporous-activated carbon particles obtained by KOH activation from pistachio shell wastes are modified by both the sulfonation process and CuO doping by hydrothermal heating (CuO@S-doped PSAC) for use as a supercapacitor. It is predicted that the electrochemical performance of the porous carbon electrode material obtained by such CuO doping and sulfonation process will be significantly increased with increased Faradaic capacitance. The electrochemical performance of CuO@S doped PSAC composite is systematically investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge/discharge (GCD) in the presence of 1 M H2SO4, 1 M Na2SO4, and 1 M NaOH as electrolytes. The CuO@S doped PSAC-based electrode shows excellent stability with high specific capacitance up to 397.16 F/g at 0.1 A/g and 92.64% retention. Furthermore, FTIR, SEM, XRD, EDS, and nitrogen adsorption/desorption analyses are used for the characterisation of the obtained composites. Based on a significant supercapacitor performance, the synthesis strategy of carbon-based electrode material containing sulfonation and CuO modifications derived from agricultural biomass waste material is predicted to be a valuable example.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这里,我们首次报道了一种简单的策略,设计了一种用Ru纳米颗粒(eMgB2-GG@Ru)修饰的分层化学剥离的二硼化镁和瓜尔胶网络结构作为电极,以评估其电化学性能在超级电容器中的应用。使用XRD彻底检查了eMgB2和功能化的eMgB2-GG@Ru材料,TGA,DLS,FE-SEM,STEM,AFM,XPS,和BET技术。组合的eMgB2-GG@Ru电极表现出网络结构形态,具有eMgB2纳米层的层间距离增加以及球形Ru纳米粒子的均匀分布。通过CV研究了eMgB2-GG@Ru及其原始材料的电化学性能,GCD,和EIS来确定它们的超级电容器性能。eMgB2-GG@Ru电极的比电容(352F/g)高于其eMgB2@Ru(258.9F/g),和MgB2(214.5F/g)对应物在使用3MKOH电解质的三电极设置中在0.5A/g的电流密度下。分级eMgB2-GG@Ru固态对称器件即使在7000次循环后仍保持89%的较高容量保持率,在0.5A/g时,功率密度为450W/kg时,最大能量密度为26.12kW/kg。因此,创新的eMgB2-GG@Ru电极提供卓越的电化学性能,具有高效的电解质离子迁移率,可用于储能应用。
    Herein, we report for the first time a simple strategy to design a hierarchical chemically exfoliated magnesium diboride and guar gum network structure decorated with Ru nanoparticles (eMgB2-GG@Ru) as an electrode to evaluate its electrochemical performance for the application of supercapacitor. The eMgB2 and functionalized eMgB2-GG@Ru materials were thoroughly examined using XRD, TGA, DLS, FE-SEM, STEM, AFM, XPS, and BET techniques. The combined eMgB2-GG@Ru electrode exhibits a network structure morphology with an increased interlayer distance of eMgB2 nanolayers along with a uniform distribution of spherical Ru nanoparticles. The electrochemical performance of eMgB2-GG@Ru and its pristine materials was studied through CV, GCD, and EIS to determine their supercapacitor performance. The eMgB2-GG@Ru electrode demonstrates higher specific capacitance (352 F/g) than its eMgB2@Ru (258.9 F/g), and MgB2 (214.5 F/g) counterparts at a current density of 0.5 A/g in a three-electrode setup using 3 M KOH electrolyte. The hierarchical eMgB2-GG@Ru solid-state symmetric devices maintained higher capacity retention of 89 % even after 7000 cycles, achieving a maximum energy density of 26.12 kW/kg at the power density of 450 W/kg at 0.5 A/g. Therefore, the innovative eMgB2-GG@Ru electrode offers superior electrochemical performance with efficient electrolyte ion mobility for energy storage applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用溶胶-凝胶技术合成了钴酸锌(ZCO)和氧化镍(NiO)纳米颗粒(NPs),和他们的复合材料具有不同的重量比使用简单的超声处理方法制备。NiO和ZCONP具有10nm和18nm的小晶粒尺寸,分别。根据紫外-可见(UV-Vis)光谱,纯NiO和ZCONPs的带隙为3.5eV和3.3eV。还测试了复合对应物及其等同物针对革兰氏阳性(金黄色葡萄球菌)和革兰氏阴性(大肠杆菌)细菌菌株的抗菌活性。与纯NP相比,30%ZCO-NiO(NZ3)的复合物对大肠杆菌具有较高的抗菌活性,抑制区〜13mm。还研究了电学和电化学性能,发现50%ZCO-NiO(NZ5)的复合材料显示出188F/g的高比电容。
    Zinc Cobaltite (ZCO) and Nickel Oxide (NiO) nanoparticles (NPs) were synthesized using a sol-gel technique, and their composites with different weight ratios were prepared using a straightforward sonication method. The NiO and ZCO NPs had small crystallite size of 10 nm and 18 nm, respectively. According to the ultraviolet-visible (UV-Vis) spectra, pure NiO and ZCO NPs exhibited band gaps of ∼3.5 eV and 3.3 eV. Antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacterial strains was also tested for the composite counterpart and its equivalents. Compared to pure NPs, the composite of 30 % ZCO-NiO (NZ3) had higher antibacterial activity with zone of inhibition of ∼13 mm against E. coli. The electrical and electrochemical properties were also explored and it was found that the composite of 50 % ZCO-NiO (NZ5) shows high specific capacitance of 188 F/g.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    二维纳米片,具有鲜明的特点,广泛用于各种应用,如水分解,超级电容器,催化等。在这项研究中,我们通过使用Cu2O纳米管作为金属离子和H2BDC作为有机连接体来生产Cu-BDCMOF纳米片。我们将这些Cu-BDCMOF纳米片与还原的氧化石墨烯(rGO)组合以形成纳米复合材料。Cu-BDCMOF和rGO之间的合作提高了4-硝基苯酚的催化还原和电化学能力。使用硼氢化钠作为还原剂和催化剂实现4-硝基苯酚向4-氨基苯酚的转化。研究探讨了不同浓度的4-硝基苯酚和硼氢化钠对催化效率的影响。硼氢化钠浓度的增加通过为还原过程提供更多的BH4-离子和电子来提高催化效率。催化还原过程遵循Langmuir-Hinshelwood机理,具有明显的伪一级动力学。具体来说,Cu-BDCMOF和rGO/Cu-BDCMOF在2A/g的电流密度下的比容量分别为468.4mAh/g和656.4mAh/g,分别,同时也增强了工作电压窗口。因此,基于rGO/Cu-BDCMOF纳米片的电极为各种领域的环境修复和能量存储应用提供了一种新颖的方法。
    Two-dimensional nanosheets, with their distinct characteristics, are widely used in various applications such as water splitting, supercapacitors, catalysis etc. In this research, we produced Cu-BDC MOF nanosheets by using Cu2O nanotubes for metal ions and H2BDC as the organic linker. We combined these Cu-BDC MOF nanosheets with reduced graphene oxide (rGO) to form a nanocomposite. The collaboration between Cu-BDC MOF and rGO boosts both the catalytic reduction of 4-nitrophenol and the electrochemical capabilities. The conversion of 4-nitrophenol to 4-aminophenol is achieved using sodium borohydride as both a reducing agent and a catalyst. The study explores the impact of different concentrations of 4-nitrophenol and sodium borohydride on catalytic efficiency. The increase in sodium borohydride concentration enhances catalytic efficiency by providing more BH4- ions and electrons for the reduction process. The catalytic reduction process adheres to the Langmuir-Hinshelwood mechanism with apparent pseudo-first-order kinetics. Specifically, Cu-BDC MOF and rGO/Cu-BDC MOF exhibit specific capacities of 468.4 mA h/g and 656.4 mA h/g at a current density of 2 A/g, respectively, while also enhancing the operating voltage window. Therefore, electrodes based on rGO/Cu-BDC MOF nanosheets present a novel approach for environmental remediation and energy storage applications across various fields.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    提高正极材料的电化学性能,构造梯度纳米结构是一种有价值的方法。本研究成功地在碳纳米管(CNT)衬底上合成了氮掺杂石墨烯量子点(NGQD)修饰的(Ni0.5Co0.5)3V2O8,构建了高性能超级电容器的自支撑电极。通过溶液浸渍工艺将(Ni0.5Co0.5)3V2O8纳米片成功地包裹到CNT表面上,这增加了材料的比表面积和层间间距。此外,由于金属离子和众多氧化还原中心之间的协同相互作用,电极材料的电化学性能显着增强。NGQD的嵌入丰富了具有活性位点的材料,并进一步提高了其比容量,而不损害层配置的结构整体性。使用CNT作为基底确保了电极的自支撑性质。因此,(Ni0.5Co0.5)3V2O8/NGQD@CNT复合材料在1Ag-1时表现出3018.2Fg-1的超高比电容,在10Ag-1时表现出2332Fg-1的超高比电容。用(Ni0.5Co0.5)3V2O8/NGQD@CNT和活性炭(AC)构建的非对称超级电容器在800Wkg-1的功率密度下表现出令人印象深刻的160.2Whkg-1的能量密度。8000次充放电循环后,容量保持率为78.5%,库洛MBIC效率始终高于98%。
    To improve the electrochemical performance of positive electrode materials, constructing graded nanostructures is a worthwhile approach. This study successfully synthesized nitrogen-doped graphene quantum dots (NGQD) modified (Ni0.5Co0.5)3V2O8 on a carbon nanotube (CNT) substrate to construct self-supporting electrodes for high-performance supercapacitors. The (Ni0.5Co0.5)3V2O8 nanosheets were successfully wrapped onto the CNT surface through a solution impregnation process, which increased the specific surface area and interlayer spacing of the material. Furthermore, the electrochemical properties of the electrode material underwent significant enhancement due to the synergistic interplay between metal ions and the numerous redox centers. The embedding of the NGQD enriched the materials with active sites and further improved its specific capacity without compromising the structure intergrity of the layer configuration. Using CNT as the substrate ensured the self-supporting nature of the electrode. Consequently, the (Ni0.5Co0.5)3V2O8/NGQD@CNT composite exhibits an ultra-high specific capacitance of 3018.2 F g-1 at 1 A g-1 and 2332 F g-1 at 10 A g-1. The asymmetric supercapacitor constructed with (Ni0.5Co0.5)3V2O8/NGQD@CNT and activated carbon (AC) presented an impressive energy density of 160.2 Wh kg-1 at a power density of 800 W kg-1. After 8000 charge-discharge cycles, the capacity retention rate was 78.5 %, with a Coulo mbic efficiency consistently above 98 %.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二维共价有机骨架(COFs)由于其独特的结构和性能,是电化学储能器件的理想电极材料。COF中氧化还原活性位点的可及性和利用效率是其伪电容性能的关键决定因素。通过在亚胺COF骨架上引入精心设计的具有氢键形成能力的酚羟基(Ar-OH),DHBD-Sb-COF比母体BD-Sb-COF表现出改善的亲水性和结晶度,因此,COF电极中的氧化还原活性位点(SbPh3部分)可以通过具有93%的高活性位点利用率的水性电解质高度进入。DHBD-Sb-COF//AC提供了出色的超级电容性能,在2553WKg-1的功率密度下具有78WhKg-1的能量密度和超级循环稳定性,超过了大多数以前报道的基于原始COF电极的超级电容器。在亚胺COF骨架上引入羟基以增强亲水性和结晶度的“二合一”策略为提高高性能超级电容器的COF基电极的电化学性能提供了新的途径。
    Two-dimensional covalent organic frameworks (COFs) are ideal electrode materials for electrochemical energy storage devices due to their unique structures and properties, and the accessibility and utilization efficiency of the redox-active sites within COFs are critical determinants of their pseudocapacitive performance. Via introducing meticulously designed phenolic hydroxyl (Ar-OH) groups with hydrogen-bond forming ability onto the imine COF skeletons, DHBD-Sb-COF exhibited improved hydrophilicity and crystallinity than the parent BD-Sb-COF, the redox-active sites (SbPh3 moieties) in COF electrodes could thus be highly accessed by aqueous electrolyte with a high active-site utilization of 93%. DHBD-Sb-COF//AC provided an excellent supercapacitive performance with an energy density of 78 Wh Kg-1 at the power density of 2553 W Kg-1 and super cycling stability, exceeding most of the previously reported pristine COF electrode-based supercapacitors. The \"two-in-one\" strategy of introducing hydroxyl groups onto imine COF skeletons to enhance both hydrophilicity and crystallinity provides a new avenue to improve the electrochemical performance of COF-based electrodes for high-performance supercapacitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究描述了使用中等温度水热法制造包含TiO2和还原的氧化石墨烯层的复合电极。形态学,晶体结构,化学成分,用FE-SEM分析了所制备复合材料的光学特性,x射线衍射,FTIR,和紫外可见光谱。循环伏安法(CV)和奈奎斯特图用于评估复合电极的电化学和阻抗响应,分别。分析表明,RGO的加入将TiO2带隙降低到3.87eV3.02eV,并提高了比电容,增强TiO2-RGO电极的超电容性能。CV研究强调TiO2-RGO复合材料在1.0M-KOH稀电解质中在25mVs-1的明显更快的扫描速率下具有152Fg-1的高比电容。这些发现证实了所制造的电极作为预期的超级电容器电极的适用性。
    This study describes the fabrication of composite electrodes comprising TiO2and reduced graphene oxide layers using a moderate-temperature hydrothermal method. The morphology, crystalline structure, chemical composition, and optical features of the prepared composites were analyzed by FE-SEM, x-ray diffraction, FTIR, and UV-visible spectroscopy. The cyclic voltammetry (CV) and Nyquist plots were used to assess the electrochemical and impedance responses of the composite electrodes, respectively. The analysis revealed that the incorporation of RGO reduced the TiO2bandgap to 3.87 eV 3.02 eV and improved the specific capacitance, enhancing the TiO2-RGO electrode\'s supercapacitive performance. CV studies highlight that the TiO2-RGO composite has a high specific capacitance of 152 F g-1at a substantially faster scan rate of 25 mV s-1in a 1.0 M-KOH dilute electrolyte. These findings confirmed the applicability of the fabricated electrodes as prospective supercapacitor electrodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异质结构和异质元素的引入已被认为是提高电化学性能的有效策略。在这里,通过简单的水热硫化方法引入硫物种,构建了开放异质结构Fe7S8/Mn(OH)2作为双功能材料。开放的虫草状形态可以使材料与电解质接触更充分,暴露了大量的反应位点。此外,异构元素S的引入成功地构建了异构接口,界面调制复合材料由Mn原子组成,根据密度泛函理论(DFT)计算,在费米能级附近贡献主要态密度(DOS)。优化了含氧中间体在析氧反应(OER)过程中的吸附能,降低了反应能垒,有利于提高材料的电化学性能。正如预测的那样,Fe7S8/Mn(OH)2材料具有显著的电化学性能,例如,对于析氧反应,在10mAcm-2时的过电位为202mV,甚至在1Ag-1时的比电容为2198Fg-1。这项工作为引入硫物种和控制材料结构的作用提供了新的见解,并为开发用于能量存储和转换的双功能材料提供了新的设计思路。
    Heterostructures and the introduction of heterogeneous elements have been regarded as effective strategies to promote electrochemical performance. Herein, sulfur species are introduced by a simple hydrothermal vulcanization method, which constructs the open heterostructure Fe7S8/Mn(OH)2 as a bifunctional material. The open cordyceps-like morphology can make the material contact more sufficiently with the electrolyte, exposing a large number of reaction sites. Furthermore, the introduction of the heterogeneous element S successfully constructs a heterogeneous interface, the interface-modulated composite material consists of Mn atoms contributing the main density of states (DOS) near the Fermi energy level from the density functional theory (DFT) calculations, which optimizes the adsorption energy of oxygen-containing intermediates during the oxygen evolution reaction (OER) process and reduces the reaction energy barrier, being conducive to the improvement of the material\'s electrochemical properties. As predicted, the Fe7S8/Mn(OH)2 material exhibits remarkable electrochemical properties, such as an overpotential of 202 mV at 10 mA cm-2 for the oxygen evolution reaction and even a specific capacitance of 2198 F g-1 at 1 A g-1. This work provides new insights into the role of introducing sulfur species and controlling the structure of the material, and exemplifies novel design ideas for developing bifunctional materials for energy storage and conversion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    增强限制碳纳米孔和离子液体(IL)之间的协同作用和对离子行为的深刻理解是增强电容存储性能所必需的。尽管对存储机制有许多理论见解,由于孔隙结构的复杂性,实验验证仍然缺乏。这里,合成了具有定制的单层和双层限制孔的压缩的富含微孔的碳框架(CMCF),它表现出兼容的亲离子界面以适应IL[EMIM][BF4]。通过部署原位拉曼光谱,原位傅里叶变换红外光谱,和固态核磁共振,阐明了孔隙结构对离子存储行为的影响。提出了这些亲离子孔中的电压诱导离子梯度填充过程,其中离子交换和共离子解吸主导电荷存储过程。此外,已经确定离子的单层约束增强了容量,和双层限制有利于充电动力学。这项工作可以指导用于高能量密度超级电容器的纳米约束碳的设计,并加深对亲离子孔中电荷存储机制的理解。
    Intensifying the synergy between confined carbon nanopores and ionic liquids (ILs) and a deep comprehension of the ion behavior is required for enhancing the capacitive storage performance. Despite many theoretical insights on the storage mechanism, experimental verification has remained lacking due to the intricate nature of pore texture. Here, a compressed micropore-rich carbon framework (CMCF) with tailored monolayer and bilayer confinement pores is synthesized, which exhibits a compatible ionophilic interface to accommodate the IL [EMIM][BF4]. By deploying in situ Raman spectroscopy, in situ Fourier-transform infrared spectroscopy, and solid-state nuclear magnetic resonance, the effect of the pore textures on ions storage behaviors is elucidated. A voltage-induced ion gradient filling process in these ionophilic pores is proposed, in which ion exchange and co-ion desorption dominate the charge storage process. Moreover, it is established that the monolayer confinement of ions enhances the capacity, and bilayer confinement facilitates the charging dynamics. This work may guide the design of nanoconfinement carbon for high-energy-density supercapacitors and deepen the understanding of the charge storage mechanism in ionophilic pores.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号