Substrate selectivity

底物选择性
  • 文章类型: Journal Article
    模拟自然系统复杂性的合成材料的创造,比如酶,在生物模拟中仍然是一个挑战。这里,我们提出了一种简单而有效的策略,将底物选择性和动态响应性引入到酶模拟超分子材料中。我们通过将γ-环糊精锚定到芴修饰的Lys/Cu2组件上来实现这一目标,模拟铜依赖性氧化酶。使用1HNMR检查组分之间的结合亲和力,等温滴定量热法(ITC),和理论模拟。γ-环糊精作为宿主,与芴基部分和特定尺寸的芳族底物形成络合物。这确保了衬底反应基团与铜中心的接近度,导致芳烃底物氧化的尺寸选择性增强,特别有利于联苯底物。值得注意的是,α-和β-环糊精不表现出这种作用,和天然氧化酶缺乏这种选择性。此外,芳族底物对催化剂的结合亲和力可以通过添加α-环糊精或在竞争性偶氮客体存在下用不同波长照射来动态调节,导致氧化活性的转变。这种方法为设计具有可调整的活性位点结构和催化性能的仿生材料提供了新的途径。
    The creation of synthetic materials that emulate the complexity of natural systems, such as enzymes, remains a challenge in biomimicry. Here, we present a simple yet effective strategy to introduce substrate selectivity and dynamic responsiveness into an enzyme-mimetic supramolecular material. We achieved this by anchoring γ-cyclodextrin to a fluorene-modified Lys/Cu2+ assembly, which mimics copper-dependent oxidase. The binding affinity among the components was examined using 1H NMR, isothermal titration calorimetry (ITC), and theoretical simulation. The γ-cyclodextrin acts as a host, forming a complex with the fluorenyl moiety and aromatic substrates of specific sizes. This ensures the proximity of the substrate reactive groups to the copper center, leading to size-selective enhancement of aromatic substrate oxidation, particularly favoring biphenyl substrates. Notably, α- and β-cyclodextrins do not exhibit this effect, and the native oxidase lacks this selectivity. Additionally, the binding affinity of the aromatic substrate to the catalyst can be dynamically tuned by adding α-cyclodextrin or by irradiating with different wavelengths in the presence of competitive azo-guests, resulting in switched oxidative activities. This approach offers a new avenue for designing biomimetic materials with tailorable active site structures and catalytic properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肽/组氨酸转运蛋白PHT1(SLC15A4)在免疫细胞的溶酶体膜中表达,在代谢和炎症信号传导中起重要作用。PHT1是一个H+偶联/组氨酸转运体,可以转运多种寡肽,包括各种细菌衍生的肽。此外,它使各种代谢信号分子的支架,并与免疫反应的关键调节元件相互作用。毫不奇怪,PHT1与自身免疫性疾病如系统性红斑狼疮(SLE)的发病机理有关。不幸的是,PHT1调节剂的药理学开发由于缺乏合适的转运试验而受到阻碍。为了解决这个缺点,提出了一种基于固体支持膜的电生理学(SSME)的新型转运测定法。目前SSME研究的主要发现包括电生理特性的首次记录,pH依赖性分析,对PHT1底物选择性的评估,以及所识别底物的传输动力学。与以前的工作相比,PHT1在其天然溶酶体环境中进行研究。此外,通过分子对接验证了观察到的底物选择性。总的来说,这种新的基于SSME的检测方法有望有助于释放PHT1的药理学潜力,并加深对其功能特性的理解。
    The peptide/histidine transporter PHT1 (SLC15A4) is expressed in the lysosomal membranes of immune cells where it plays an important role in metabolic and inflammatory signaling. PHT1 is an H+-coupled/histidine symporter that can transport a wide range of oligopeptides, including a variety of bacterial-derived peptides. Moreover, it enables the scaffolding of various metabolic signaling molecules and interacts with key regulatory elements of the immune response. Not surprisingly, PHT1 has been implicated in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). Unfortunately, the pharmacological development of PHT1 modulators has been hampered by the lack of suitable transport assays. To address this shortcoming, a novel transport assay based on solid-supported membrane-based electrophysiology (SSME) is presented. Key findings of the present SSME studies include the first recordings of electrophysiological properties, a pH dependence analysis, an assessment of PHT1 substrate selectivity, as well as the transport kinetics of the identified substrates. In contrast to previous work, PHT1 is studied in its native lysosomal environment. Moreover, observed substrate selectivity is validated by molecular docking. Overall, this new SSME-based assay is expected to contribute to unlocking the pharmacological potential of PHT1 and to deepen the understanding of its functional properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    酮还原酶在手性药物中间体的不对称合成中起着不可或缺的作用,深入了解其底物选择性可以提高酶工程的效率。在这一努力中,通过基因挖掘方法,成功克隆了一种新的从四羊鞘杆菌属SY1中鉴定的短链脱氢酶/还原酶(SDR)SsSDR1,并在大肠杆菌中进行了功能表达。已测试了其对卤代苯乙酮的活性,结果表明SsSDR1-WT对3,5-双(三氟甲基)苯乙酮(1f)具有高活性,阿瑞吡坦合成中的重要前体。此外,与它们的α-卤素类似物相比,SsSDR1-WT对没有α-卤素取代的苯乙酮显示出明显的底物偏好。探索底物选择性的结构基础,解析了apo形式的SsSDR1-WT的X射线晶体结构和与NAD的复合物结构。以2-氯-1-(3,4-二氟苯基)乙酮(1i)为代表的α-卤代苯乙酮,确定了影响SsSDR1-WT底物选择性的关键位点,并通过合理重塑SsSDR1的腔C1和C2,获得了出色的突变体I144A/S153L,其对α-卤代苯乙酮的活性显着提高。1f和1i的不对称催化在50mL的规模下进行,两者的时空产率(STY)分别为1200和6000克/升·d,分别。这项研究不仅为卤化苯乙酮提供了有价值的生物催化剂,而且还可以深入了解底物结合袋和底物选择性之间的关系。
    Ketoreductases play an indispensable role in the asymmetric synthesis of chiral drug intermediates, and an in-depth understanding of their substrate selectivity can improve the efficiency of enzyme engineering. In this endeavor, a new short-chain dehydrogenase/reductase (SDR) SsSDR1 identified from Sphingobacterium siyangense SY1 by gene mining method was successfully cloned and functionally expressed in Escherichia coli. Its activity against halogenated acetophenones has been tested and the results illustrated that SsSDR1-WT exhibits high activity for 3,5-bis(trifluoromethyl)acetophenone (1f), an important precursor in the synthesis of aprepitant. In addition, SsSDR1-WT showed obvious substrate preference for acetophenones without α-halogen substitution compared to their α-halogen analogs. To explore the structural basis of substrate selectivity, the X-ray crystal structures of SsSDR1-WT in its apo form and the complex structure with NAD were resolved. Taking 2-chloro-1-(3, 4-difluorophenyl) ethanone (1i) as the representative α-haloacetophenone, the key sites affecting substrate selectivity of SsSDR1-WT were identified and through the rational remodeling of the cavities C1 and C2 of SsSDR1, an excellent mutant I144A/S153L with significantly improved activity against α-halogenated acetophenones was obtained. The asymmetric catalysis of 1f and 1i was performed at the scale of 50 mL, and the space-time yields (STY) of the two were 1200 and 6000 g/L∙d, respectively. This study not only provides valuable biocatalysts for halogenated acetophenones, but also yields insights into the relationship between the substrate-binding pocket and substrate selectivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    GRETCHENHAGEN3(GH3)酰基酰氨基合成酶将氨基酸与酰基激素偶联以激活或失活激素分子。GH3蛋白质的最大亚组修饰了促生长激素生长素(吲哚-3-乙酸;IAA),第二大类激活防御激素茉莉酸(JA)。GH3蛋白的两步反应机制提供了一种潜在的校对机制,以确保激素修饰的保真度。检查修饰IAA的拟南芥GH3蛋白(AtGH3.2/YDK2,AtGH3.5/WES1,AtGH3.17/VAS2)的前半反应中的焦磷酸盐释放,JA(AtGH3.11/JAR1),和其他酰基酸(AtGH3.7,AtGH3.12/PBS3)表明酰基酸-AMP中间体在没有氨基酸的情况下水解为酰基酸和AMP,传输前编辑机制的典型特征。AtGH3.2/YDK2和AtGH3.5/WES1的单周转动力学分析表明,非同源酰基-腺苷酸中间体比同源IAA-腺苷酸水解更快。相比之下,AtGH3.11/JAR1仅腺苷酸类JA,不是IAA。虽然拟南芥中的一些生长素缀合GH3蛋白(即,AtGH3.5/WES1)接受多种酰基酸底物,像AtGH3.2/YDK2一样,是IAA特有的;然而,这两种蛋白质共享相似的活性位点残基。AtGH3.2/YDK2和AtGH3.5/WES1的嵌合变体的生化分析表明,C-末端结构域有助于同源酰基酸底物的选择。这些发现表明,非同源酰基-腺苷酸中间体的水解,或校对,通过减慢的结构开关进行,该开关在完全反应进行之前为保真度提供检查点。
    GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases conjugate amino acids to acyl acid hormones to either activate or inactivate the hormone molecule. The largest subgroup of GH3 proteins modify the growth-promoting hormone auxin (indole-3-acetic acid; IAA) with the second largest class activating the defense hormone jasmonic acid (JA). The two-step reaction mechanism of GH3 proteins provides a potential proofreading mechanism to ensure fidelity of hormone modification. Examining pyrophosphate release in the first-half reaction of Arabidopsis GH3 proteins that modify IAA (AtGH3.2/YDK2, AtGH3.5/WES1, AtGH3.17/VAS2), JA (AtGH3.11/JAR1), and other acyl acids (AtGH3.7, AtGH3.12/PBS3) indicates that acyl acid-AMP intermediates are hydrolyzed into acyl acid and AMP in the absence of the amino acid, a typical feature of pre-transfer editing mechanisms. Single-turnover kinetic analysis of AtGH3.2/YDK2 and AtGH3.5/WES1 shows that non-cognate acyl acid-adenylate intermediates are more rapidly hydrolyzed than the cognate IAA-adenylate. In contrast, AtGH3.11/JAR1 only adenylates JA, not IAA. While some of the auxin-conjugating GH3 proteins in Arabidopsis (i.e., AtGH3.5/WES1) accept multiple acyl acid substrates, others, like AtGH3.2/YDK2, are specific for IAA; however, both these proteins share similar active site residues. Biochemical analysis of chimeric variants of AtGH3.2/YDK2 and AtGH3.5/WES1 indicates that the C-terminal domain contributes to selection of cognate acyl acid substrates. These findings suggest that the hydrolysis of non-cognate acyl acid-adenylate intermediates, or proofreading, proceeds via a slowed structural switch that provides a checkpoint for fidelity before the full reaction proceeds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    腈水解酶代表一类独特的酶,在催化腈化合物的水解中起关键作用,导致形成相应的羧酸。这些酶实体已经在一系列行业中引起了极大的关注,包括药品,农用化学品,和精细化学品。此外,越来越大的环境压力加剧了它们的重要性,推动它们进入生物降解和生物修复工作的最前沿。然而,天然腈水解酶表现出固有的局限性,如热稳定性低,窄的底物选择性,和不适应变化的环境条件。在过去的十年里,在阐明腈水解酶的结构基础和催化机理方面已经做出了大量努力,为腈水解酶的工程提供依据。在具有理想催化性能的腈水解酶的调控及其在工业生产中的应用方面取得了重大突破。这篇综述致力于提供与腈水解酶相关的最新研究进展的全面论述和总结,特别强调结构属性的阐明,催化机理,催化特性,以及提高腈水解酶催化性能的策略。此外,探索延伸到工艺工程领域和腈水解酶的多种应用。此外,展望了腈水解酶未来的发展趋势,为相关领域的研究和应用提供重要指导。
    Nitrilases represent a distinct class of enzymes that play a pivotal role in catalyzing the hydrolysis of nitrile compounds, leading to the formation of corresponding carboxylic acids. These enzymatic entities have garnered significant attention across a spectrum of industries, encompassing pharmaceuticals, agrochemicals, and fine chemicals. Moreover, their significance has been accentuated by mounting environmental pressures, propelling them into the forefront of biodegradation and bioremediation endeavors. Nevertheless, the natural nitrilases exhibit intrinsic limitations such as low thermal stability, narrow substrate selectivity, and inadaptability to varying environmental conditions. In the past decade, substantial efforts have been made in elucidating the structural underpinnings and catalytic mechanisms of nitrilase, providing basis for engineering of nitrilases. Significant breakthroughs have been made in the regulation of nitrilases with ideal catalytic properties and application of the enzymes for industrial productions. This review endeavors to provide a comprehensive discourse and summary of recent research advancements related to nitrilases, with a particular emphasis on the elucidation of the structural attributes, catalytic mechanisms, catalytic characteristics, and strategies for improving catalytic performance of nitrilases. Moreover, the exploration extends to the domain of process engineering and the multifarious applications of nitrilases. Furthermore, the future development trend of nitrilases is prospected, providing important guidance for research and application in the related fields.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    五味子木脂素是五味子果实中发现的主要生物活性化合物,如五味子木脂素和五味子木脂素,在器官保护或其他临床作用中起着重要作用。Pinoretinol-lariciresinol还原酶(PLR)在植物木酚素的生物合成中起着关键作用,然而,迄今为止,对中国南方豆科植物进行了有限的研究。这项研究确定了五个基因为ScPLR,成功克隆了它们的编码序列,并阐明了它们的催化能力。ScPLR3-5可以同时识别松脂醇和拉冷素醇作为底物,并将它们转化为拉西利辛醇和Secoisolariciresinol,分别,而ScPLR2专门催化(+)-松脂醇转化为(+)-松脂醇。转录-代谢物相关性分析表明,ScPLR2表现出与其他成员不同的独特特性。分子对接和定点诱变表明,底物结合基序中的Phe271和Leu40对ScPLR2的催化活性至关重要。这项研究为了解五味子木酚素生物合成中的必需酶奠定了基础。
    Schisandra lignans are the main bioactive compounds found in Schisandra chinensis fruits, such as schisandrol lignans and schisandrin lignans, which play important roles in organ protection or other clinical roles. Pinoresinol-lariciresinol reductase (PLR) plays a pivotal role in plant lignan biosynthesis, however, limited research has been conducted on S. chinensis PLR to date. This study identified five genes as ScPLR, successfully cloned their coding sequences, and elucidated their catalytic capabilities. ScPLR3-5 could recognize both pinoresinol and lariciresinol as substrates, and convert them into lariciresinol and secoisolariciresinol, respectively, while ScPLR2 exclusively catalyzed the conversion of (+)-pinoresinol into (+)-lariciresinol. Transcript-metabolite correlation analysis indicated that ScPLR2 exhibited unique properties that differed from the other members. Molecular docking and site-directed mutagenesis revealed that Phe271 and Leu40 in the substrate binding motif were crucial for the catalytic activity of ScPLR2. This study serves as a foundation for understanding the essential enzymes involved in schisandra lignan biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    ATP结合盒(ABC)转运蛋白是通过转运各种底物而进化出具有多种功能的完整膜蛋白。在拟南芥中,ABC蛋白的G亚家族特别丰富,在植物发育和逆境应答过程中参与多种信号通路。这里,我们发现了两个拟南芥ABCG转运蛋白,ABCG16和ABCG25通过ABA和ABA-葡萄糖基酯(ABA-GE)的内膜特异性二聚化偶联转运参与了ABA介导的胁迫反应和早期植物生长,分别。我们首先公开了ABCG16通过ABA信号传导促进渗透胁迫耐受性。更具体地说,ABCG16在酵母和植物细胞中刺激细胞ABA外排。结合FRET(Förster共振能量转移)分析,我们表明,ABCG16形成了用于ABA输出活性的强制性同二聚体,并且质膜上残留的ABCG16同二聚体对ABA特异性响应,同二聚体内显着构象变化。此外,我们证明ABCG16在ER膜上与ABCG25异源二聚化,并促进拟南芥和烟草细胞中ABA-GE的ER进入。异二聚体ABCG16/ABCG25对ABA-GE的特异性响应以及双突变体jat1-2abcg25的优异生长支持了两个ABCGs通过调节ABA-GE跨ER转运在早期幼苗建立中的抑制作用膜。一起,我们对来自同源或异源二聚化ABCG复合物的FRET信号的内膜特异性分析使我们能够将内膜偏向的二聚化伙伴关系与ABCG转运蛋白的不同底物易位联系起来,为理解ABCG转运蛋白在植物发育和胁迫反应中的全能提供了一个原型框架。
    ATP-binding cassette (ABC) transporters are integral membrane proteins that have evolved diverse functions fulfilled via the transport of various substrates. In Arabidopsis, the G subfamily of ABC proteins is particularly abundant and participates in multiple signaling pathways during plant development and stress responses. In this study, we revealed that two Arabidopsis ABCG transporters, ABCG16 and ABCG25, engage in ABA-mediated stress responses and early plant growth through endomembrane-specific dimerization-coupled transport of ABA and ABA-glucosyl ester (ABA-GE), respectively. We first revealed that ABCG16 contributes to osmotic stress tolerance via ABA signaling. More specifically, ABCG16 induces cellular ABA efflux in both yeast and plant cells. Using FRET analysis, we showed that ABCG16 forms obligatory homodimers for ABA export activity and that the plasma membrane-resident ABCG16 homodimers specifically respond to ABA, undergoing notable conformational changes. Furthermore, we demonstrated that ABCG16 heterodimerizes with ABCG25 at the endoplasmic reticulum (ER) membrane and facilitates the ER entry of ABA-GE in both Arabidopsis and tobacco cells. The specific responsiveness of the ABCG16-ABCG25 heterodimer to ABA-GE and the superior growth of their double mutant support an inhibitory role of these two ABCGs in early seedling establishment via regulation of ABA-GE translocation across the ER membrane. Our endomembrane-specific analysis of the FRET signals derived from the homo- or heterodimerized ABCG complexes allowed us to link endomembrane-biased dimerization to the translocation of distinct substrates by ABCG transporters, providing a prototypic framework for understanding the omnipotence of ABCG transporters in plant development and stress responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    帽RNA甲基化在复制中起重要作用,逃避宿主RNA传感器识别,和发病机制。冠状病毒具有由非结构蛋白(nsp)14和nsp16/10复合物编码的鸟嘌呤N7-和2'-O-核糖甲基转移酶(N7-MTase和2'-O-MTase),分别。在这项研究中,我们在体外重建了严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的N7-MTase和2'-O-MTase的两步RNA甲基化,并与SARS-CoV相比证明了其共同和不同的特征。我们发现,SARS-CoV-2的nsp16/102'-O-MTase比SARS-CoV的对应物具有更宽的底物选择性,并且可以以序列无关的方式容纳未甲基化和未加帽的RNA底物。最有趣的是,nsp16/10复合物的底物选择性不是由nsp16MTase的脱辅酶决定的,而是由其辅因子nsp10决定的。这些结果提供了对SARS-CoV-2MTases的独特特征的见解,并可能有助于开发策略来精确干预SARS-CoV-2的甲基化途径和发病机理。
    Cap RNA methylations play important roles in the replication, evasion of host RNA sensor recognition, and pathogenesis. Coronaviruses possess both guanine N7- and 2\'-O-ribose methyltransferases (N7-MTase and 2\'-O-MTase) encoded by nonstructural protein (nsp) 14 and nsp16/10 complex, respectively. In this study, we reconstituted the two-step RNA methylations of N7-MTase and 2\'-O-MTase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and demonstrated its common and different features in comparison with that of SARS-CoV. We revealed that the nsp16/10 2\'-O-MTase of SARS-CoV-2 has a broader substrate selectivity than the counterpart of SARS-CoV and can accommodate both unmethylated and uncapped RNA substrates in a sequence-independent manner. Most intriguingly, the substrate selectivity of nsp16/10 complex is not determined by the apoenzyme of nsp16 MTase but by its cofactor nsp10. These results provide insight into the unique features of SARS-CoV-2 MTases and may help develop strategies to precisely intervene in the methylation pathway and pathogenesis of SARS-CoV-2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    最近发现的SWEET(糖最终将被输出的转运蛋白)蛋白参与单糖和二糖的选择性转运。原核生物的对应物,半SWEET,形成二聚体,每个单体形成三螺旋跨膜束(THB)。较长的真核SWEET具有七个跨膜螺旋,带有两个THB和一个接头螺旋。已经通过实验确定了半SWEET/SWEET的结构。实验研究揭示了植物SWEET在重要生理过程中的作用,并确定了负责底物选择性的残留物。然而,未表征来自后生动物和细菌的SWEET/半SWEET。在这项研究中,我们使用基于结构的序列比对,并比较了来自四个不同分类组的2000多个SWEET/semiSWEET。在所有位置检查残留物/化学性质的保存。分析了每个分类群的系统发育树的进化枝/亚进化枝的特性。选择性过滤器中已知残留物的保护模式用于预测植物SWEET以及一些后生动物和细菌簇的底物偏好。门控区和底物结合区的一些残基,在所有分类组中,面向孔的位置和在螺旋-螺旋界面处都是保守的。在特定的面向孔位置保留极性/带电残基,螺旋-螺旋界面和环中似乎是植物SWEET的独特之处。总的来说,后生动物SWEET中保守残基的数量较少。植物和后生动物SWEET在脯氨酸四分体中分别表现出四个和三个脯氨酸残基的高度保守性。“进一步的实验研究可以验证预测的底物选择性和在植物中SWEET/semiSWEET的结构和功能重要位置保守的极性/带电/芳香族残基的重要性,后生动物和细菌。
    The recently discovered SWEET (Sugar Will Eventually be Exported Transporter) proteins are involved in the selective transport of monosaccharides and disaccharides. The prokaryotic counterparts, semiSWEETs, form dimers with each monomer forming a triple-helix transmembrane bundle (THB). The longer eukaryotic SWEETs have seven transmembrane helices with two THBs and a linker helix. Structures of semiSWEETs/SWEETs have been determined experimentally. Experimental studies revealed the role of plant SWEETs in vital physiological processes and identified residues responsible for substrate selectivity. However, SWEETs/semiSWEETs from metazoans and bacteria are not characterized. In this study, we used structure-based sequence alignment and compared more than 2000 SWEET/semiSWEETs from four different taxonomic groups. Conservation of residue/chemical property was examined at all positions. Properties of clades/subclades of phylogenetic trees from each taxonomic group were analyzed. Conservation pattern of known residues in the selectivity-filter was used to predict the substrate preference of plant SWEETs and some clusters of metazoans and bacteria. Some residues at the gating and substrate-binding regions, pore-facing positions and at the helix-helix interface are conserved across all taxonomic groups. Conservation of polar/charged residues at specific pore-facing positions, helix-helix interface and in loops seems to be unique for plant SWEETs. Overall, the number of conserved residues is less in metazoan SWEETs. Plant and metazoan SWEETs exhibit high conservation of four and three proline residues respectively in \"proline tetrad.\" Further experimental studies can validate the predicted substrate selectivity and significance of conserved polar/charged/aromatic residues at structurally and functionally important positions of SWEETs/semiSWEETs in plants, metazoans and bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    tRNA衍生片段(tRF)已成为免疫调节的关键参与者。一些RNaseA超家族成员参与tRF群体的形成。通过比较野生型和敲除巨噬细胞系,我们之前的工作揭示了RNase2可以选择性切割tRNA.这里,我们通过筛选合成的tRNA来确认体外蛋白质裂解模式,单突变变体,和反密码子环DNA/RNA发夹。通过对tRF产品进行测序,我们鉴定了在B1(U/C)和B2(A)位点具有碱基特异性的重组RNA酶2的切割选择性,与之前的细胞研究一致。最后,通过MD模拟预测蛋白质-发夹复合物。结果揭示了α1,环3和环4以及β6RNase2区的贡献,其中残基Arg36/Asn39/Gln40/Asn65/Arg68/Arg132提供相互作用,从P-1到对反密码子环识别至关重要的P2位点。RNA酶2特异性tRF产生的知识可能指导感染和免疫相关疾病的新治疗方法。
    tRNA-derived fragments (tRFs) have emerged as key players of immunoregulation. Some RNase A superfamily members participate in the shaping of the tRFs population. By comparing wild-type and knockout macrophage cell lines, our previous work revealed that RNase 2 can selectively cleave tRNAs. Here, we confirm the in vitro protein cleavage pattern by screening of synthetic tRNAs, single-mutant variants, and anticodon-loop DNA/RNA hairpins. By sequencing of tRF products, we identified the cleavage selectivity of recombinant RNase 2 with base specificity at B1 (U/C) and B2 (A) sites, consistent with a previous cellular study. Lastly, protein-hairpin complexes were predicted by MD simulations. Results reveal the contribution of the α1, loop 3 and loop 4, and β6 RNase 2 regions, where residues Arg36/Asn39/Gln40/Asn65/Arg68/Arg132 provide interactions, spanning from P-1 to P2 sites that are essential for anticodon loop recognition. Knowledge of RNase 2-specific tRFs generation might guide new therapeutic approaches for infectious and immune-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号