Subjective experiment

  • 文章类型: Journal Article
    最近对点云作为成像模态的兴趣的增加已经促使诸如JPEG和MPEG的标准化团体发起旨在开发点云的压缩标准的活动。有损压缩通常会引入视觉伪影,从而对媒体的感知质量产生负面影响,只有通过主观视觉质量评估实验才能可靠地测量。虽然MPEG标准在以前的研究中已经在多个场合进行了主观评估,还没有工作评估最近的JPEGPleno标准的性能相比,他们。在这项研究中,对JPEG和MPEG点云压缩标准进行了综合性能评价。首先借助客观的质量度量来分析不同配置参数对编解码器性能的影响。此分析的结果用于为每个编解码器定义三种速率分配策略,用于以四个目标速率压缩一组点云。然后根据两个主观质量评估方案对该组失真点云进行主观评估。最后,获得的结果用于比较这些压缩标准的性能,并得出有关最佳编码实践的见解。
    The recent rise in interest in point clouds as an imaging modality has motivated standardization groups such as JPEG and MPEG to launch activities aiming at developing compression standards for point clouds. Lossy compression usually introduces visual artifacts that negatively impact the perceived quality of media, which can only be reliably measured through subjective visual quality assessment experiments. While MPEG standards have been subjectively evaluated in previous studies on multiple occasions, no work has yet assessed the performance of the recent JPEG Pleno standard in comparison to them. In this study, a comprehensive performance evaluation of JPEG and MPEG standards for point cloud compression is conducted. The impact of different configuration parameters on the performance of the codecs is first analyzed with the help of objective quality metrics. The results from this analysis are used to define three rate allocation strategies for each codec, which are employed to compress a set of point clouds at four target rates. The set of distorted point clouds is then subjectively evaluated following two subjective quality assessment protocols. Finally, the obtained results are used to compare the performance of these compression standards and draw insights about best coding practices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Healthcare professionals have been increasingly viewing medical images and videos in their routine clinical practice, and this in a wide variety of environments. Both the perception and interpretation of medical visual information, across all branches of practice or medical specialties (e.g. diagnostic, therapeutic, or surgical medicine), career stages, and practice settings (e.g. emergency care), appear to be critical for patient care. However, medical images and videos are not self-explanatory and, therefore, need to be interpreted by humans, i.e. medical experts. In addition, various types of degradations and artifacts may appear during image acquisition or processing, and consequently affect medical imaging data. Such distortions tend to impact viewers\' quality of experience, as well as their clinical practice. It is accordingly essential to better understand how medical experts perceive the quality of visual content. Thankfully, progress has been made in the recent literature towards such understanding. In this article, we present an up-to-date state-of the-art of relatively recent (i.e. not older than ten years old) existing studies on the subjective quality assessment of medical images and videos, as well as research works using task-based approaches. Furthermore, we discuss the merits and drawbacks of the methodologies used, and we provide recommendations about experimental designs and statistical processes to evaluate the perception of medical images and videos for future studies, which could then be used to optimise the visual experience of image readers in real clinical practice. Finally, we tackle the issue of the lack of available annotated medical image and video quality databases, which appear to be indispensable for the development of new dedicated objective metrics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    There have been few reports that investigated the effects of the degree and pattern of a spectral smearing of stimuli due to deteriorated hearing ability on the performance of auditory brain-computer interface (BCI) systems. In this study, we assumed that such spectral smearing of stimuli may affect the performance of an auditory steady-state response (ASSR)-based BCI system and performed subjective experiments using 10 normal-hearing subjects to verify this assumption. We constructed smearing-reflected stimuli using an 8-channel vocoder with moderate and severe hearing loss setups and, using these stimuli, performed subjective concentration tests with three symmetric and six asymmetric smearing patterns while recording electroencephalogram signals. Then, 56 ratio features were calculated from the recorded signals, and the accuracies of the BCI selections were calculated and compared. Experimental results demonstrated that (1) applying smearing-reflected stimuli decreases the performance of an ASSR-based auditory BCI system, and (2) such negative effects can be reduced by adjusting the feature settings of the BCI algorithm on the basis of results acquired a posteriori. These results imply that by fine-tuning the feature settings of the BCI algorithm according to the degree and pattern of hearing ability deterioration of the recipient, the clinical benefits of a BCI system can be improved.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号