Stoichiometric calibration

化学计量校准
  • 文章类型: Journal Article
    目的:研究表明,来自欧洲质子中心的计算机断层扫描(CT)的停止功率比(SPR)预测差异很大。为了标准化这个过程,此处提供了有关指定Hounsfield查找表(HLUT)的分步指南。
    方法:HLUT规范过程分为六个步骤:幻影设置,CT采集,CT数提取,SPR测定,HLUT规范,和HLUT验证。适当的CT体模有头部和身体大小的部分,关于X射线和质子相互作用的组织等效插入物。从覆盖每个插入件的内部70%的感兴趣区域中提取CT编号,并在扫描方向上提取几个轴向CT切片。为了获得最佳的HLUT规格,在质子束中测量体模插入物的SPR,并以100MeV的化学计量计算制表的人体组织的SPR。包括体模插入物和制表的人体组织都增加了HLUT的稳定性。在四个组织组(肺,脂肪,软组织,和骨头),然后用直线连接。最后,进行彻底但简单的验证。
    结果:每个步骤都全面解释了最佳实践和个人挑战。提出了一种定义明确的策略,用于指定HLUT各个线段之间的连接点。该指南在不同供应商的三台CT扫描仪上进行了示例性测试,证明其可行性。
    结论:提出的基于CT的HLUT规范的分步指南以及建议和示例有助于减少SPR预测中的中心间差异。
    Studies have shown large variations in stopping-power ratio (SPR) prediction from computed tomography (CT) across European proton centres. To standardise this process, a step-by-step guide on specifying a Hounsfield look-up table (HLUT) is presented here.
    The HLUT specification process is divided into six steps: Phantom setup, CT acquisition, CT number extraction, SPR determination, HLUT specification, and HLUT validation. Appropriate CT phantoms have a head- and body-sized part, with tissue-equivalent inserts in regard to X-ray and proton interactions. CT numbers are extracted from a region-of-interest covering the inner 70% of each insert in-plane and several axial CT slices in scan direction. For optimal HLUT specification, the SPR of phantom inserts is measured in a proton beam and the SPR of tabulated human tissues is computed stoichiometrically at 100 MeV. Including both phantom inserts and tabulated human tissues increases HLUT stability. Piecewise linear regressions are performed between CT numbers and SPRs for four tissue groups (lung, adipose, soft tissue, and bone) and then connected with straight lines. Finally, a thorough but simple validation is performed.
    The best practices and individual challenges are explained comprehensively for each step. A well-defined strategy for specifying the connection points between the individual line segments of the HLUT is presented. The guide was tested exemplarily on three CT scanners from different vendors, proving its feasibility.
    The presented step-by-step guide for CT-based HLUT specification with recommendations and examples can contribute to reduce inter-centre variations in SPR prediction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    计算机断层摄影(CT)中的光子计数检测器(PCD)可以对入射光子的数量进行计数,以便获得对应于用户定义的阈值的光子的能量信息。目前正在进行使用双能CT(DECT)提取有效原子序数(EAN)和相对电子密度(RED)的研究。本研究提出了一种通过使用基于PCD-CT的化学计量校准来提高组织等效材料的EAN和RED精度的方法。在8种组织等效材料的能量仓(EB)和全谱(FS)模式下获得DECT图像后,EAN用化学计量校准计算。使用EAN图像,采集RED图像以评估准确性。用EB获得的EAN和RED的误差均在4%以内。特别是,RED的准确度高于FS法。研究结果表明,PCD-CT有助于提高EAN和RED的准确性。进一步的研究将旨在通过像素校正PCD图像来减少环形伪影,并改善粒子治疗中剂量计算的停止功率比(SPR)测量。
    The photon counting detector (PCD) in computed tomography (CT) can count the number of incoming photons in order to obtain energy information for photons corresponding to user-defined thresholds. Research on the extraction of effective atomic number (EAN) and relative electron density (RED) using dual-energy CT (DECT) is currently underway. This study proposes a method for improving EAN and RED accuracy of tissue-equivalent materials by using PCD-CT-based stoichiometric calibration. After obtaining DECT images in energy bin (EB) and full spectrum (FS) modes for eight tissue-equivalent materials, the EAN was calculated with stoichiometric calibration. Using the EAN image, the RED image was acquired to evaluate the accuracy. The errors of both EAN and RED obtained with EB were within 4%. In particular, the accuracy of RED was higher than that of the FS method. Study results indicate that PCD-CT contributes to improving EAN and RED accuracy. Further studies will be aimed at reducing ring artifacts by pixel-correcting PCD images and improving stopping power ratio (SPR) measurements for dose calculation in particle therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    OBJECTIVE: The purpose of this study was to quantify the variability of stoichiometric calibration curves for different computed tomography (CT) scanners and determine whether an averaged Hounsfield unit (HU)-to-stopping power ratio (SPR) calibration curve can be used across multiple CT scanners.
    METHODS: Five CT scanners were used to scan an electron density phantom to establish HU values of known material plugs. A stoichiometric calibration curve was calculated for CT scanners and for the average curve. Animal tissue surrogates were used to compare the water-equivalent thickness (WET) of the animal tissue surrogates calculated by the treatment planning system (TPS) and the WET values measured with a multilayered ionization chamber. The calibration curves were optimized to reduce the percentage of difference between measured and TPS-calculated WET values. A second set of tissue surrogates was then used to evaluate the overall range of uncertainty for the optimized CT-specific and average calibration curves.
    RESULTS: Overall, the average variation in HU for all 6 calibration curves before optimization was 8.3 HU. For both the averaged and CT-specific calibrations, the root mean square error (RMSE) of the percentage of difference between TPS-calculated and measured WET values before optimization was 4%. The RMSE of the percentage of difference for the TPS-calculated and multilayered ionization chamber measured WET values after the optimization for both averaged and CT-specific calibration curves was reduced to less than 1.5%. The overall RMSE of the TPS and the measured WET percentage of difference after optimization was 2.1% for both averaged and CT-specific calibration curves.
    CONCLUSIONS: Averaged CT calibration curves can be used to map the HU-to-SPR in TPSs, if the variations in HU values across all scanners is relatively small. Performing tissue surrogate optimization of the HU-to-SPR calibration curve has been shown to reduce the overall uncertainty of the calibration for averaged and CT-specific calibration curves and is recommended, especially if an averaged HU-to-SPR calibration curve is used.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Evaluation Study
    对于离子治疗中的基于CT的剂量计算,必须提供光子的衰减系数与粒子的停止能力之间的联系。有两种通常已知的方法来建立这样的校准曲线,化学计量校准和直接测量与组织替代品或动物样品。对两种方法进行了调查和比较。作为化学计量校准的输入,将来自ICRP报告23的数据与来自ICRP报告110的新可用数据进行比较。通过采用较新的数据,没有观察到相关差异。系统分析和定量两种采集方法(直接测量和化学计量校准)之间的差异。与ICRP报告的数据相比,最相关的变化是由替代品中碳和氧含量的交换引起的,并导致布拉格峰普遍超调。通过治疗计划研究和等范围表面研究了校准曲线之间差异的结果。观察到头部治疗计划的范围差异高达6mm。另外提出了两个提高校准曲线精度的改进。
    For CT-based dose calculation in ion therapy a link between the attenuation coefficients of photons and the stopping-power of particles has to be provided. There are two commonly known approaches to establish such a calibration curve, the stoichiometric calibration and direct measurements with tissue substitutes or animal samples. Both methods were investigated and compared. As input for the stoichiometric calibration the data from ICRP-report 23 were compared to newly available data from ICRP-report 110. By employing the newer data no relevant difference could be observed. The differences between the two acquisition methods (direct measurement and stoichiometric calibration) were systematically analyzed and quantified. The most relevant change was caused by the exchange of carbon and oxygen content in the substitutes in comparison to the data of the ICRP-reports and results in a general overshoot of the Bragg peak. The consequence of the differences between the calibration curves was investigated with treatment planning studies and iso-range surfaces. Range differences up to 6mm in treatment plans of the head were observed. Additionally two improvements are suggested which increase the accuracy of the calibration curve.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号