Stochastic Collocation

  • 文章类型: Journal Article
    考虑在随机随机几何上定义的线性椭圆PDE,它是N个随机变量的函数。在许多应用中,量化传播到兴趣量(QoI)的不确定性是一个重要的问题。随机域被分成大的和小的变化贡献。通过应用稀疏网格随机搭配方法来近似大的变化。用随机搭配扰动方法近似小变化,并将其作为校正项添加到大变化稀疏网格分量中。得出QoI方差的收敛率,并将其与数值实验中获得的收敛率进行比较。我们的方法显着降低了随机问题的维数,使其适用于大维问题。校正项的计算成本相对于小变化的维数最多二次增加。此外,对于小变化和大变化是独立的情况,成本线性增加。
    Consider a linear elliptic PDE defined over a stochastic stochastic geometry a function of N random variables. In many application, quantify the uncertainty propagated to a Quantity of Interest (QoI) is an important problem. The random domain is split into large and small variations contributions. The large variations are approximated by applying a sparse grid stochastic collocation method. The small variations are approximated with a stochastic collocation-perturbation method and added as a correction term to the large variation sparse grid component. Convergence rates for the variance of the QoI are derived and compared to those obtained in numerical experiments. Our approach significantly reduces the dimensionality of the stochastic problem making it suitable for large dimensional problems. The computational cost of the correction term increases at most quadratically with respect to the number of dimensions of the small variations. Moreover, for the case that the small and large variations are independent the cost increases linearly.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    在本文中,我们分析了具有随机域变形的线性抛物线偏微分方程。特别是,我们专注于数值逼近给定兴趣量(QoI)的统计矩的问题。假定几何形状是随机的。抛物线问题被重新映射到具有随机系数的固定确定性域,并显示允许在嵌入复杂超平面的定义明确的区域上进行扩展。QoI的随机矩是通过采用搭配方法结合各向同性Smolyak稀疏网格来计算的。推导了理论上的子指数收敛率,它是搭配插值节数的函数。进行了数值实验,并证实了理论误差估计。
    In this article we analyze the linear parabolic partial differential equation with a stochastic domain deformation. In particular, we concentrate on the problem of numerically approximating the statistical moments of a given Quantity of Interest (QoI). The geometry is assumed to be random. The parabolic problem is remapped to a fixed deterministic domain with random coefficients and shown to admit an extension on a well defined region embedded in the complex hyperplane. The stochastic moments of the QoI are computed by employing a collocation method in conjunction with an isotropic Smolyak sparse grid. Theoretical sub-exponential convergence rates as a function to the number of collocation interpolation knots are derived. Numerical experiments are performed and they confirm the theoretical error estimates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The efficiency of a wireless power transfer (WPT) system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC) theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE) of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM) band at 2.45 GHz. First, we model the impact of the textile antenna\'s variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Computational models for vascular growth and remodeling (G&R) are used to predict the long-term response of vessels to changes in pressure, flow, and other mechanical loading conditions. Accurate predictions of these responses are essential for understanding numerous disease processes. Such models require reliable inputs of numerous parameters, including material properties and growth rates, which are often experimentally derived, and inherently uncertain. While earlier methods have used a brute force approach, systematic uncertainty quantification in G&R models promises to provide much better information. In this work, we introduce an efficient framework for uncertainty quantification and optimal parameter selection, and illustrate it via several examples. First, an adaptive sparse grid stochastic collocation scheme is implemented in an established G&R solver to quantify parameter sensitivities, and near-linear scaling with the number of parameters is demonstrated. This non-intrusive and parallelizable algorithm is compared with standard sampling algorithms such as Monte-Carlo. Second, we determine optimal arterial wall material properties by applying robust optimization. We couple the G&R simulator with an adaptive sparse grid collocation approach and a derivative-free optimization algorithm. We show that an artery can achieve optimal homeostatic conditions over a range of alterations in pressure and flow; robustness of the solution is enforced by including uncertainty in loading conditions in the objective function. We then show that homeostatic intramural and wall shear stress is maintained for a wide range of material properties, though the time it takes to achieve this state varies. We also show that the intramural stress is robust and lies within 5% of its mean value for realistic variability of the material parameters. We observe that prestretch of elastin and collagen are most critical to maintaining homeostasis, while values of the material properties are most critical in determining response time. Finally, we outline several challenges to the G&R community for future work. We suggest that these tools provide the first systematic and efficient framework to quantify uncertainties and optimally identify G&R model parameters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号