Slit-Robo signalling

Slit - Robo 信号
  • 文章类型: Journal Article
    集体细胞迁移是生物体和成虫发育的基础,用于组织再生和病理状况,如癌症。作为一个连贯的群体,迁移需要维持细胞间的相互作用,而运动接触抑制(CIL),局部斥力,可以推动团队前进。这里我们展示了细胞-细胞相互作用分子,N-钙黏着蛋白,调节大鼠雪旺细胞(SC)集体迁移过程中的粘附和排斥过程,这是周围神经再生所必需的。然而,与其在细胞-细胞粘附中的作用不同,排斥过程与N-钙黏着蛋白的反式同二聚化和相关的粘附连接复合物无关。相反,需要N-钙粘蛋白的胞外结构域以在细胞表面呈现排斥性Slit2/Slit3信号。抑制Slit2/Slit3信号抑制CIL并随后集体施万细胞迁移,导致粘附,非迁移细胞簇。此外,对坐骨神经损伤后小鼠离体外植体的分析表明,抑制Slit2可降低雪旺氏细胞的集体迁移,并增加神经桥内雪旺氏细胞的聚集。这些发现提供了有关相反信号如何介导集体细胞迁移的见解,以及hhCIL途径如何成为抑制病理性细胞迁移的有希望的靶标。
    Collective cell migration is fundamental for the development of organisms and in the adult for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective SC migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased SC collective migration and increased clustering of SCs within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    早期关于肝脏发育的数据表明胆管的形态发生,门静脉间质和肝动脉是相互依存的,然而,这种相互依赖是如何安排的仍然是未知的。这里,使用2D和3D成像,我们首先描述门静脉间充质细胞如何组织形成肝动脉。接下来,我们搜索了在门静脉区域发育过程中活跃的细胞间信号,发现轴突引导基因在发育中的胆管和门静脉间质中动态表达。利用小鼠的组织特异性基因失活,我们表明,排斥性引导分子BMP共受体A(Rgma)/Neogenin1(Neo1)受体/配体对对于门区发育是可有可无的,但是,门静脉间质中的Roundabout2(Robo2)/Slit2信号缺乏会导致形成肝动脉中膜的血管平滑肌细胞成熟减少。在稳态条件下,这种动脉异常不会影响肝功能,但与部分肝切除术后的明显组织损伤有关。总之,我们的工作确定了在健康和肝脏再生的肝脏脉管系统的发展新的球员。
    Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号