Single-molecule localization microscopy

单分子定位显微镜
  • 文章类型: Journal Article
    光谱单分子定位显微镜(sSMLM)利用了纳米显微镜和光谱学的优势,使亚10nm分辨率以及多标记样品的同时多色成像。使用深度学习重建原始sSMLM数据是一种在纳米级可视化亚细胞结构的有前途的方法。
    开发一种新的计算方法,利用深度学习来重建无标记和荧光标记的sSMLM成像数据。
    我们开发了一种基于双网络模型的深度学习算法,称为DsSMLM,来重建sSMLM数据。通过对不同样品进行成像实验来评估DsSMLM的有效性,包括无标记单链DNA(ssDNA)纤维,COS-7和U2OS细胞上的荧光标记组蛋白标记,和合成DNA折纸纳米探针的同时多色成像。
    对于无标签成像,在ssDNA纤维上获得6.22nm的空间分辨率;对于荧光标记成像,DsSMLM揭示了由细胞核上的组蛋白标记物定义的富含染色质和缺乏染色质的区域的分布,并同时提供了纳米探针样品的多色成像,区分在三个发射点标记的两种染料,分离距离为40nm。有了DsSMLM,我们观察到增强的光谱轮廓,单色成像的定位检测提高了8.8%,同时双色成像的定位检测提高了5.05%.
    我们证明了适用于无标记和荧光标记的sSMLM成像数据的基于深度学习的sSMLM成像重建的可行性。我们预计我们的技术将是高质量超分辨率成像的有价值的工具,用于更深入地了解DNA分子的光物理,并将有助于研究多个纳米细胞结构及其相互作用。
    UNASSIGNED: Spectroscopic single-molecule localization microscopy (sSMLM) takes advantage of nanoscopy and spectroscopy, enabling sub-10 nm resolution as well as simultaneous multicolor imaging of multi-labeled samples. Reconstruction of raw sSMLM data using deep learning is a promising approach for visualizing the subcellular structures at the nanoscale.
    UNASSIGNED: Develop a novel computational approach leveraging deep learning to reconstruct both label-free and fluorescence-labeled sSMLM imaging data.
    UNASSIGNED: We developed a two-network-model based deep learning algorithm, termed DsSMLM, to reconstruct sSMLM data. The effectiveness of DsSMLM was assessed by conducting imaging experiments on diverse samples, including label-free single-stranded DNA (ssDNA) fiber, fluorescence-labeled histone markers on COS-7 and U2OS cells, and simultaneous multicolor imaging of synthetic DNA origami nanoruler.
    UNASSIGNED: For label-free imaging, a spatial resolution of 6.22 nm was achieved on ssDNA fiber; for fluorescence-labeled imaging, DsSMLM revealed the distribution of chromatin-rich and chromatin-poor regions defined by histone markers on the cell nucleus and also offered simultaneous multicolor imaging of nanoruler samples, distinguishing two dyes labeled in three emitting points with a separation distance of 40 nm. With DsSMLM, we observed enhanced spectral profiles with 8.8% higher localization detection for single-color imaging and up to 5.05% higher localization detection for simultaneous two-color imaging.
    UNASSIGNED: We demonstrate the feasibility of deep learning-based reconstruction for sSMLM imaging applicable to label-free and fluorescence-labeled sSMLM imaging data. We anticipate our technique will be a valuable tool for high-quality super-resolution imaging for a deeper understanding of DNA molecules\' photophysics and will facilitate the investigation of multiple nanoscopic cellular structures and their interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    传统光学显微镜的空间分辨率受衍射极限限制为数百纳米。超分辨率显微镜通过规避传统光学显微镜的衍射极限,实现一位数纳米分辨率。用于纳米级形貌成像的DNA点积累(DNA-PAINT)属于单分子定位超分辨率方法家族。DNA-PAINT的独特功能是它允许亚纳米分辨率,频谱无限复用,接近检测,和目标分子的定量计数。这里,我们描述了有效的DNA-PAINT显微镜检查的先决条件。
    The spatial resolution of conventional light microscopy is restricted by the diffraction limit to hundreds of nanometers. Super-resolution microscopy enables single digit nanometer resolution by circumventing the diffraction limit of conventional light microscopy. DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) belongs to the family of single-molecule localization super-resolution approaches. Unique features of DNA-PAINT are that it allows for sub-nanometer resolution, spectrally unlimited multiplexing, proximity detection, and quantitative counting of target molecules. Here, we describe prerequisites for efficient DNA-PAINT microscopy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于时间聚焦多光子激发(TFMPE)和单波长激发的单分子定位显微镜(SMLM)用于可视化厚样品中自发闪烁的荧光团标记的亚细胞结构的三维(3D)分布水平空间分辨率。为了消除离焦区域非局部分子的光漂白效应,提高3DSMLM成像中光子预算的利用率,具有单波长TFMPE的SMLM实现了自发闪烁荧光团的宽场和轴向限制的双光子激发(TPE)。闪烁荧光团的TPE光谱测量然后通过TFMPE成像在可调激发波长进行,产生最佳的TPE波长,以增加SMLM期间单个闪烁事件中检测到的光子数量。随后,记录闪烁荧光团的TPE荧光,以获得癌细胞中微管的二维TFMPE-SMLM图像,定位精度为18±6nm,总体成像分辨率约为51nm,这是根据奈奎斯特分辨率和定位精度的贡献进行估计的。结合散光成像,该系统能够对具有阿尔茨海默病病理特征的5XFAD转基因小鼠的脑组织切片进行3DTFMPE-SMLM成像,揭示神经毒性淀粉样β肽沉积物的分布。
    Single-molecule localization microscopy (SMLM) based on temporal-focusing multiphoton excitation (TFMPE) and single-wavelength excitation is used to visualize the three-dimensional (3D) distribution of spontaneously blinking fluorophore-labeled subcellular structures in a thick specimen with a nanoscale-level spatial resolution. To eliminate the photobleaching effect of unlocalized molecules in out-of-focus regions for improving the utilization rate of the photon budget in 3D SMLM imaging, SMLM with single-wavelength TFMPE achieves wide-field and axially confined two-photon excitation (TPE) of spontaneously blinking fluorophores. TPE spectral measurement of blinking fluorophores is then conducted through TFMPE imaging at a tunable excitation wavelength, yielding the optimal TPE wavelength for increasing the number of detected photons from a single blinking event during SMLM. Subsequently, the TPE fluorescence of blinking fluorophores is recorded to obtain a two-dimensional TFMPE-SMLM image of the microtubules in cancer cells with a localization precision of 18±6 nm and an overall imaging resolution of approximately 51 nm, which is estimated based on the contribution of Nyquist resolution and localization precision. Combined with astigmatic imaging, the system is capable of 3D TFMPE-SMLM imaging of brain tissue section of a 5XFAD transgenic mouse with the pathological features of Alzheimer\'s disease, revealing the distribution of neurotoxic amyloid-beta peptide deposits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单分子定位显微镜(SMLM)通过超过衍射极限并揭示以前无法实现的细胞结构和分子动力学的纳米级细节,彻底改变了光学显微镜。这种超分辨率成像能力依赖于荧光团光开关,这对于优化成像条件和准确确定荧光团位置至关重要。为了了解单染料分子的一般开和关光切换机制,评估了各种光开关试剂。在各种光开关试剂存在下单分子水平的荧光开关率(kon和koff)的系统测量和光开关试剂-荧光团对结构的理论计算表明,开关机制主要由光开关试剂的亲核性决定,接通机制是双光子诱导的解离过程,这与照射激光的功率和该对的键离解能有关。这项研究有助于对SMLM成像中的分子光开关机理有更广泛的了解,并为设计具有扩展到材料科学和化学的潜在应用的改进的光开关试剂提供了基础。
    Single-molecule localization microscopy (SMLM) has revolutionized optical microscopy by exceeding the diffraction limit and revealing previously unattainable nanoscale details of cellular structures and molecular dynamics. This super-resolution imaging capability relies on fluorophore photoswitching, which is crucial for optimizing the imaging conditions and accurately determining the fluorophore positions. To understand the general on and off photoswitching mechanisms of single dye molecules, various photoswitching reagents were evaluated. Systematic measurement of the single-molecule-level fluorescence on and off rates (kon and koff) in the presence of various photoswitching reagents and theoretical calculation of the structure of the photoswitching reagent-fluorophore pair indicated that the switch-off mechanism is mainly determined by the nucleophilicity of the photoswitching reagent, and the switch-on mechanism is a two-photon-induced dissociation process, which is related to the power of the illuminating laser and bond dissociation energy of this pair. This study contributes to a broader understanding of the molecular photoswitching mechanism in SMLM imaging and provides a basis for designing improved photoswitching reagents with potential applications extending to materials science and chemistry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于它们对亲核攻击和化学漂白的敏感性而受阻,长期以来,人们一直认为缺电子的方酸染料不适合用于生物成像。这项研究揭示了一个令人惊讶的转折:在水性环境中,漂白不是不可逆的,而是可逆的自发猝灭过程。利用这个新发现,我们介绍了一种新颖的深红色方晶探针,专门用于活细胞超分辨率成像。该探针能够在生理条件下进行单分子定位显微镜(SMLM),而无需有害添加剂或强激光,并表现出由生物亲核试剂协调的自发闪烁,如谷胱甘肽或氢氧根阴离子。具有低占空比(〜0.1%)和高发射速率(在400W/cm2下〜6×104光子/s),方酸探针比基准Cy5染料高出4倍,比硅罗丹明高出1.7倍。带有探针的活细胞SMLM揭示了细胞膜复杂的结构细节,这证明了方酸染料在下一代超分辨率成像中的巨大潜力。
    Hampered by their susceptibility to nucleophilic attack and chemical bleaching, electron-deficient squaraine dyes have long been considered unsuitable for biological imaging. This study unveils a surprising twist: in aqueous environments, bleaching is not irreversible but rather a reversible spontaneous quenching process. Leveraging this new discovery, we introduce a novel deep-red squaraine probe tailored for live-cell super-resolution imaging. This probe enables single-molecule localization microscopy (SMLM) under physiological conditions without harmful additives or intense lasers and exhibits spontaneous blinking orchestrated by biological nucleophiles, such as glutathione or hydroxide anion. With a low duty cycle (∼0.1%) and high-emission rate (∼6 × 104 photons/s under 400 W/cm2), the squaraine probe surpasses the benchmark Cy5 dye by 4-fold and Si-rhodamine by a factor of 1.7 times. Live-cell SMLM with the probe reveals intricate structural details of cell membranes, which demonstrates the high potential of squaraine dyes for next-generation super-resolution imaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项工作中,我们开发了一种扩展显微镜(ExM)协议,该协议将ExM与光激活定位显微镜(ExPALM)相结合,用于酵母细胞成像,并报告了裂殖酵母的单分子和扩展显微镜的强大协议,缩写为SExY。我们优化的SExY协议保留了约50%的荧光蛋白信号,与原始蛋白质保留ExM(proExM)方案相比,将获得的量增加一倍。它允许五倍,裂殖酵母细胞的高度各向同性的扩张,我们在优化蛋白质产量的同时精心控制。我们在几个示例性分子靶标上展示了SExY方法,并明确引入了低丰度的蛋白质靶标(例如,cbp1和mis16等核蛋白以及着丝粒特异性组蛋白cnp1)。SExY方案优化增加蛋白质产量可能对许多研究有益,当靶向低丰度蛋白质时,或用于由于各种原因而依赖于遗传标记的研究(例如,对于不能容易地被外在染色靶向的蛋白质,或者在由非特异性染色引入的伪影干扰数据质量的情况下)。
    In this work, we have developed an expansion microscopy (ExM) protocol that combines ExM with photoactivated localization microscopy (ExPALM) for yeast cell imaging, and report a robust protocol for single-molecule and expansion microscopy of fission yeast, abbreviated as SExY. Our optimized SExY protocol retains about 50% of the fluorescent protein signal, doubling the amount obtained compared to the original protein retention ExM (proExM) protocol. It allows for a fivefold, highly isotropic expansion of fission yeast cells, which we carefully controlled while optimizing protein yield. We demonstrate the SExY method on several exemplary molecular targets and explicitly introduce low-abundant protein targets (e.g. nuclear proteins such as cbp1 and mis16, and the centromere-specific histone protein cnp1). The SExY protocol optimizations increasing protein yield could be beneficial for many studies, when targeting low abundance proteins, or for studies that rely on genetic labelling for various reasons (e.g. for proteins that cannot be easily targeted by extrinsic staining or in case artefacts introduced by unspecific staining interfere with data quality).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多孔固体通常包含具有各种尺寸的孔的复杂孔网络。当它们扩散通过多孔材料时跟踪单个荧光探针可用于以数十纳米分辨率表征孔网络。然而,了解荧光探针在约束下的运动行为对于可靠地得出孔隙网络特性至关重要。这里,我们介绍了定义明确的光刻制造的模型孔,以研究封闭中的探针行为。我们研究了探针-宿主相互作用对受限单发射极量子点探针扩散和捕获的影响。利用探针的pH响应性,我们能够在很大程度上抑制孔壁的截留。这使我们能够定义用于绘制一维孔阵列的可及孔空间以及现实生活中的聚合催化剂载体颗粒的实验条件。
    Porous solids often contain complex pore networks with pores of various sizes. Tracking individual fluorescent probes as they diffuse through porous materials can be used to characterize pore networks at tens of nanometers resolution. However, understanding the motion behavior of fluorescent probes in confinement is crucial to reliably derive pore network properties. Here, we introduce well-defined lithography-made model pores developed to study probe behavior in confinement. We investigated the influence of probe-host interactions on diffusion and trapping of confined single-emitter quantum-dot probes. Using the pH-responsiveness of the probes, we were able to largely suppress trapping at the pore walls. This enabled us to define experimental conditions for mapping of the accessible pore space of a one-dimensional pore array as well as a real-life polymerization-catalyst-support particle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    超分辨率显微镜彻底改变了生物成像,能够以迄今为止无与伦比的空间分辨率直接了解细胞结构和蛋白质排列。今天,精细的单分子定位显微镜方法可实现一位数纳米范围内的空间分辨率。随着用可见光进行分子分辨率荧光成像的竞赛继续进行,可靠的生物兼容的参考结构将成为必不可少的验证分辨率。这里,我们介绍PicoRulers(基于蛋白质的成像校准光学标尺),设计为超分辨率荧光成像的先进分子纳米调制器的多标记寡聚蛋白。我们使用遗传密码扩展(GCE)以6nm的距离将三个非规范氨基酸(ncAA)位点特异性地掺入同源三聚体增殖细胞核抗原(PCNA)中。使用四嗪染料和四嗪官能化的寡核苷酸的生物正交点击标记允许以最小的连锁误差有效地标记PicoRuler。我们使用时间分辨光开关指纹分析来证明成功的合成和DNA-PAINT来解析6nmPCNAPicoRulers。由于PicoRulers在细胞条件下保持其结构完整性,因此它们代表了理想的分子纳米调制器,用于对超分辨率成像技术的性能进行基准测试。特别是在复杂的生物环境中。本文受版权保护。保留所有权利。
    Super-resolution microscopy has revolutionized biological imaging enabling direct insight into cellular structures and protein arrangements with so far unmatched spatial resolution. Today, refined single-molecule localization microscopy methods achieve spatial resolutions in the one-digit nanometer range. As the race for molecular resolution fluorescence imaging with visible light continues, reliable biologically compatible reference structures will become essential to validate the resolution power. Here, PicoRulers (protein-based imaging calibration optical rulers), multilabeled oligomeric proteins designed as advanced molecular nanorulers for super-resolution fluorescence imaging are introduced. Genetic code expansion (GCE) is used to site-specifically incorporate three noncanonical amino acids (ncAAs) into the homotrimeric proliferating cell nuclear antigen (PCNA) at 6 nm distances. Bioorthogonal click labeling with tetrazine-dyes and tetrazine-functionalized oligonucleotides allows efficient labeling of the PicoRuler with minimal linkage error. Time-resolved photoswitching fingerprint analysis is used to demonstrate the successful synthesis and DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) is used to resolve 6 nm PCNA PicoRulers. Since PicoRulers maintain their structural integrity under cellular conditions they represent ideal molecular nanorulers for benchmarking the performance of super-resolution imaging techniques, particularly in complex biological environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在单分子定位显微镜(SMLM)中,免疫荧光(IF)染色会影响重建的超分辨率图像的质量。然而,优化IF染色仍然具有挑战性,因为IF染色是一个步骤,不可逆的过程通过可逆结合的样品标记提出了一种替代策略,但是这样的技术需要显著的技术进步来增强标记的解离而不牺牲它们的结合特异性。在这篇文章中,我们介绍了单抗体标记的延时成像。我们的通用技术利用市售的染料缀合抗体。该方法控制抗体浓度以捕获亚细胞靶标的单抗体标记,从而通过贴标签过程实现SMLM。我们进一步证明了双色单抗体标记以增强样品标记密度。新方法允许在单抗体水平和细胞环境内评估抗体结合。这份全面的指南为单抗体标记实验的延时成像提供了分步指导,并使单抗体标记技术能够应用于广泛的目标。©2023作者。WileyPeriodicalsLLC出版的当前协议。基本方案1:用于单抗体标记的样品制备基本方案2:用于单分子定位显微镜的数据采集替代方案:使用OptoSplitII方程的双色单抗体标记基本方案3:图像分析。
    In single-molecule localization microscopy (SMLM), immunofluorescence (IF) staining affects the quality of the reconstructed superresolution images. However, optimizing IF staining remains challenging because IF staining is a one-step, irreversible process. Sample labeling through reversible binding presents an alternative strategy, but such techniques require significant technological advancements to enhance the dissociation of labels without sacrificing their binding specificity. In this article, we introduce time-lapse imaging of single-antibody labeling. Our versatile technique utilizes commercially available dye-conjugated antibodies. The method controls the antibody concentrations to capture single-antibody labeling of subcellular targets, thereby achieving SMLM through the labeling process. We further demonstrate dual-color single-antibody labeling to enhance the sample labeling density. The new approach allows the evaluation of antibody binding at the single-antibody level and within the cellular environment. This comprehensive guide offers step-by-step instructions for time-lapse imaging of single-antibody labeling experiments and enables the application of the single-antibody labeling technique to a wide range of targets. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Sample preparation for single-antibody labeling Basic Protocol 2: Data acquisition for single-molecule localization microscopy Alternate Protocol: Dual-color single-antibody labeling using OptoSplit II equation Basic Protocol 3: Image analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于双楔形棱镜(DWP)的光谱单分子定位显微镜(sSMLM)系统提供了改进的定位精度和可调的光谱或定位性能,但它的非线性光谱色散提出了一个挑战。系统的方法可以帮助理解挑战,然后通过定制系统参数来优化DWP系统的性能,以最大化各种分子标记的光谱或定位性能。
    我们开发了基于蒙特卡罗(MC)的模型,该模型在给定不同系统参数的情况下预测基于DWP的sSMLM系统的成像输出。
    通过将我们的模拟与理论方程和荧光微球进行比较,我们评估了MC模型的定位和光谱精度。此外,我们使用反射率(R):透射率(T)为R50:T50和R30:T70的分束器(BS)及其折衷来模拟基于DWP的系统。
    我们的MC模拟显示,相对于理论方程,局部化和光谱精度的平均偏差为2.5和2.1nm,相对于荧光微球的平均偏差为2.3和1.0nm。与R50:T50BS相比,R30:T70BS的光谱精度提高了8%,但定位精度平均降低了35%。
    MC模型准确预测定位精度,光谱精度,光谱峰值,和荧光微球的光谱宽度,正如实验数据所验证的那样。我们的工作增强了对基于DWP的sSMLM用于复用成像的理论理解,实现性能优化。
    The dual-wedge prism (DWP)-based spectroscopic single-molecule localization microscopy (sSMLM) system offers improved localization precision and adjustable spectral or localization performance, but its nonlinear spectral dispersion presents a challenge. A systematic method can help understand the challenges and thereafter optimize the DWP system\'s performance by customizing the system parameters to maximize the spectral or localization performance for various molecular labels.
    We developed a Monte Carlo (MC)-based model that predicts the imaging output of the DWP-based sSMLM system given different system parameters.
    We assessed our MC model\'s localization and spectral precisions by comparing our simulation against theoretical equations and fluorescent microspheres. Furthermore, we simulated the DWP-based system using beamsplitters (BSs) with a reflectance (R):transmittance (T) of R50:T50 and R30:T70 and their tradeoffs.
    Our MC simulation showed average deviations of 2.5 and 2.1 nm for localization and spectral precisions against theoretical equations and 2.3 and 1.0 nm against fluorescent microspheres. An R30:T70 BS improved the spectral precision by 8% but worsened the localization precision by 35% on average compared with an R50:T50 BS.
    The MC model accurately predicted the localization precision, spectral precision, spectral peaks, and spectral widths of fluorescent microspheres, as validated by experimental data. Our work enhances the theoretical understanding of DWP-based sSMLM for multiplexed imaging, enabling performance optimization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号