Single-molecule biophysics

单分子生物物理学
  • 文章类型: Journal Article
    核孔复合物通过一套紧密同步的生化反应来调节核质运输。易位货物的物理化学性质正在成为其穿梭动力学的主要调节剂。除了受到分子量和表面暴露的氨基酸的影响,蛋白质的核转运动力学也取决于它们的纳米力学性质,然而,支撑核孔复合物机械选择性的机制尚不清楚。在这里,我们表明,在核定位序列附近具有局部软区域的蛋白质表现出更高的核导入率,并且这种机械选择性在击倒核孔蛋白153(核孔复合物中的关键蛋白质)时受到特定损害。这使我们可以设计一个简短的,易于表达和化学惰性的非结构化肽标签,可加速硬蛋白货物的核进口速度。我们还表明,表达肽标记的心肌素相关转录因子的U2OS骨肉瘤细胞以更高的速率将这种机械敏感性蛋白导入细胞核,并显示出更快的运动性。局部非结构化区域降低了蛋白质易位的自由能障,并可能为核机械转导提供控制机制。
    The nuclear pore complex regulates nucleocytoplasmic transport by means of a tightly synchronized suite of biochemical reactions. The physicochemical properties of the translocating cargos are emerging as master regulators of their shuttling dynamics. As well as being affected by molecular weight and surface-exposed amino acids, the kinetics of the nuclear translocation of protein cargos also depend on their nanomechanical properties, yet the mechanisms underpinning the mechanoselectivity of the nuclear pore complex are unclear. Here we show that proteins with locally soft regions in the vicinity of the nuclear-localization sequence exhibit higher nuclear-import rates, and that such mechanoselectivity is specifically impaired upon knocking down nucleoporin 153, a key protein in the nuclear pore complex. This allows us to design a short, easy-to-express and chemically inert unstructured peptide tag that accelerates the nuclear-import rate of stiff protein cargos. We also show that U2OS osteosarcoma cells expressing the peptide-tagged myocardin-related transcription factor import this mechanosensitive protein to the nucleus at higher rates and display faster motility. Locally unstructured regions lower the free-energy barrier of protein translocation and might offer a control mechanism for nuclear mechanotransduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    病毒核糖核蛋白(vRNP)是病毒增殖的基石,因为它们形成负责大多数单链RNA病毒转录和复制的大分子复合物。甲型流感病毒(IAV)聚合酶在vRNP的背景下催化RNA合成,其中基因组病毒RNA(vRNA)由病毒核蛋白(NP)包装。我们使用高速原子力显微镜和电子显微镜研究了RNA合成过程中单个IAV重组RNP(rRNP)的构象动力学。rRNP呈现环形组织,其允许实时跟踪由推进的聚合酶引起的NP-vRNA模板中的构象变化。我们证明rRNP在RNA合成过程中经历了一个明确的构象循环,这可以根据以前的转录模型来解释。我们还提供了rRNP中平均RNA合成速率的初始估计及其对核苷酸浓度和新生RNA二级结构稳定性的依赖性。此外,我们提供证据表明rRNP可以进行连续的RNA合成循环,考虑到它们回收和生成多个RNA拷贝的能力。
    Viral ribonucleoproteins (vRNPs) are the cornerstones of viral proliferation, as they form the macromolecular complexes that are responsible for the transcription and replication of most single-stranded RNA viruses. The influenza A virus (IAV) polymerase catalyzes RNA synthesis within the context of vRNPs where genomic viral RNA (vRNA) is packaged by the viral nucleoprotein (NP). We used high-speed atomic force microscopy and electron microscopy to study the conformational dynamics of individual IAV recombinant RNPs (rRNPs) during RNA synthesis. The rRNPs present an annular organization that allows for the real-time tracking of conformational changes in the NP-vRNA template caused by the advancing polymerase. We demonstrate that the rRNPs undergo a well-defined conformational cycle during RNA synthesis, which can be interpreted in light of previous transcription models. We also present initial estimations of the average RNA synthesis rate in the rRNP and its dependence on the nucleotide concentration and stability of the nascent RNA secondary structures. Furthermore, we provide evidence that rRNPs can perform consecutive cycles of RNA synthesis, accounting for their ability to recycle and generate multiple copies of RNA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质驱动不同长度尺度的基因组区隔。虽然这些蛋白质的身份已经得到了充分的研究,驱动基因组组织的物理机制在很大程度上仍然难以捉摸。由于缺乏在细胞环境中参数化物理模型的方法,研究这些机制具有挑战性。此外,因为复杂,纠缠在一起,染色质的浓密性质,传统的实时成像方法通常缺乏空间分辨率来剖析这些原理。在这一章中,我们将描述如何在纯化和细胞质条件下成像λ-DNA与蛋白质的相互作用。首先,我们将概述如何制备生物素化的DNA,用生物素缀合的聚乙二醇(PEG)功能化盖玻片,并使用全内部荧光显微镜组装与蛋白质-DNA相互作用成像兼容的DNA微通道。然后,我们将描述实验方法,以在体外对蛋白质-DNA相互作用进行成像,并使用非洲爪狼卵提取物对DNA环挤出进行成像。
    Proteins drive genome compartmentalization across different length scales. While the identities of these proteins have been well-studied, the physical mechanisms that drive genome organization have remained largely elusive. Studying these mechanisms is challenging owing to a lack of methodologies to parametrize physical models in cellular contexts. Furthermore, because of the complex, entangled, and dense nature of chromatin, conventional live imaging approaches often lack the spatial resolution to dissect these principles. In this chapter, we will describe how to image the interactions of λ-DNA with proteins under purified and cytoplasmic conditions. First, we will outline how to prepare biotinylated DNA, functionalize coverslips with biotin-conjugated poly-ethylene glycol (PEG), and assemble DNA microchannels compatible for the imaging of protein-DNA interactions using total internal fluorescence microscopy. Then we will describe experimental methods to image protein-DNA interactions in vitro and DNA loop extrusion using Xenopus laevis egg extracts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基因组是自我组织和自我维持的,复杂的染色质大分子。固有的异质性,随机性,相分离,和基因组操作的染色质动力学使得使用集成方法研究基因组具有挑战性。各种单分子力-,荧光-,根植于不同学科的基于测序的技术已经被开发出来,以填补批量测量能力的关键差距,每个提供独特的,否则无法访问,了解基因组的结构和维护。能够捕获有关组织的分子水平细节,构象变化,和遗传物质的包装,以及维护因素的持续和随机运动,单分子工具箱为合作研究提供了一个极好的机会,以了解遗传物质在健康中的作用和疾病中的故障。在这次审查中,我们讨论了通过单分子技术为基因组科学带来的新见解,以及它们继续彻底改变该领域的潜力-一次一个分子。预计《物理化学年度评论》的最终在线出版日期,第75卷是2024年4月。请参阅http://www。annualreviews.org/page/journal/pubdates的订正估计数。
    Genomes are self-organized and self-maintained as long, complex macromolecules of chromatin. The inherent heterogeneity, stochasticity, phase separation, and chromatin dynamics of genome operation make it challenging to study genomes using ensemble methods. Various single-molecule force-, fluorescent-, and sequencing-based techniques rooted in different disciplines have been developed to fill critical gaps in the capabilities of bulk measurements, each providing unique, otherwise inaccessible, insights into the structure and maintenance of the genome. Capable of capturing molecular-level details about the organization, conformational changes, and packaging of genetic material, as well as processive and stochastic movements of maintenance factors, a single-molecule toolbox provides an excellent opportunity for collaborative research to understand how genetic material functions in health and malfunctions in disease. In this review, we discuss novel insights brought to genomic sciences by single-molecule techniques and their potential to continue to revolutionize the field-one molecule at a time.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    持续运动是酶降解结晶聚合物的关键反应。产品放行是重置移动周期的重要现象,但它如何影响几丁质酶的动力学是未知的。因此,我们研究了二乙酰几丁糖(C2)对粘质沙雷氏菌(SmChiA)中几丁质酶A的生化活性和运动的影响。C2对SmChiA的结晶几丁质降解的表观抑制常数为159μM。通过X射线晶体学获得的C2的结合位置在子位1,2,并且Trp275与子位1的C2相互作用。该结合状态与通过生物化学分析获得的竞争性抑制一致。C2对高速(HS)AFM观测运动速度的表观抑制常数为330μM,这接近生化结果,表明结晶几丁质降解的主要因素也是由于抑制了持续运动而导致的降解活性降低。Trp275是制造滑动中间复合物的关键残基。SmChiAW275A对结晶几丁质显示出比WT更弱的活性和亲和力,因为它比WT更少。此外,SmChiAW275A对C2的生化表观抑制常数为45.6μM。W275A突变体显示出比WT更强的C2抑制,尽管C2结合亲和力比WT更弱。该结果表明Trp275对于亚位点+1处的相互作用是重要的,但对于制造滑动中间复合物和物理阻断C2在催化位点上的再结合以用于结晶几丁质降解也是重要的。
    Processive movement is the key reaction for crystalline polymer degradation by enzyme. Product release is an important phenomenon in resetting the moving cycle, but how it affects chitinase kinetics was unknown. Therefore, we investigated the effect of diacetyl chitobiose (C2) on the biochemical activity and movement of chitinase A from Serratia marcescens (SmChiA). The apparent inhibition constant of C2 on crystalline chitin degradation of SmChiA was 159 μM. The binding position of C2 obtained by X-ray crystallography was at subsite +1, +2 and Trp275 interact with C2 at subsite +1. This binding state is consistent with the competitive inhibition obtained by biochemical analysis. The apparent inhibition constant of C2 on the moving velocity of high-speed (HS) AFM observations was 330 μM, which is close to the biochemical results, indicating that the main factor in crystalline chitin degradation is also the decrease in degradation activity due to inhibition of processive movement. The Trp275 is a key residue for making a sliding intermediate complex. SmChiA W275A showed weaker activity and affinity than WT against crystalline chitin because it is less processive than WT. In addition, biochemical apparent inhibition constant for C2 of SmChiA W275A was 45.6 μM. W275A mutant showed stronger C2 inhibition than WT even though the C2 binding affinity is weaker than WT. This result indicated that Trp275 is important for the interaction at subsite +1, but also important for making sliding intermediate complex and physically block the rebinding of C2 on the catalytic site for crystalline chitin degradation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    泛素化是决定抗原呈递细胞上II类主要组织相容性复合物(MHCII)/肽复合物的寿命的过程。这个过程受到泛素连接酶水平的严格控制,MHCII周转的破坏可导致胸腺内CD4T细胞的不适当发育,并阻碍外周组织中调节性T细胞的形成。为了研究潜在的机制,我们利用缺乏膜相关RING-CH(MARCH)I泛素连接酶的树突状细胞。我们发现MARCHI的过表达降低了与LAG-3的相互作用。此外,与泛素连接的MHCII分子也显示与LAG-3的结合减少。我们采用了衍射X射线闪烁(DXB),一种用于单分子X射线成像的技术,实时观察活细胞上的蛋白质运动。我们的观察表明,与MARCHI缺陷的树突状细胞或MHCIIKR突变体相比,正常的MHCII分子在细胞表面移动得更快。这可能是泛素化的结果。这些发现表明,从泛素化的MHCII到T细胞受体的信号传导与非泛素化形式不同。看来泛素化的MHCII可能不会很快内化,而是向T细胞提供抗原,导致一系列显著的免疫反应。
    Ubiquitination is a process that dictates the lifespan of major histocompatibility complex class II (MHC II)/peptide complexes on antigen-presenting cells. This process is tightly controlled by the levels of ubiquitin ligases, and disruptions in the turnover of MHC II can lead to the improper development of CD4+ T cells within the thymus and hinder the formation of regulatory T cells in the peripheral tissue. To investigate the underlying mechanisms, we utilized dendritic cells lacking the Membrane-associated RING-CH (MARCH) I ubiquitin ligase. We discovered that the overexpression of MARCH I decreases the interaction with LAG-3. Moreover, the MHC II molecules tethered with ubiquitin also showed diminished binding to LAG-3. We employed Diffracted X-ray Blinking (DXB), a technique used for single-molecule X-ray imaging, to observe the protein movements on live cells in real time. Our observations indicated that the normal MHC II molecules moved more rapidly across the cell surface compared to those on the MARCH I-deficient dendritic cells or MHC II KR mutants, which is likely a result of ubiquitination. These findings suggest that the signaling from ubiquitinated MHC II to the T cell receptor differs from the non-ubiquitinated forms. It appears that ubiquitinated MHC II might not be quickly internalized, but rather presents antigens to the T cells, leading to a range of significant immunological responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们报告了机器学习技术在从力谱数据中加速蛋白质展开轨迹的分类和分析中的应用。使用内核方法,逻辑回归,和三重态损失,我们开发了一种称为强制展开和监督迭代在线(FUSION)学习的工作流程,其中用户将少量可重复的展开模式分类为图像,机器的任务是识别相似的图像以对剩余的数据进行分类。我们在多域XMod-Dockerin/Cohesin复合体上使用两个案例研究测试了工作流程,首先使用蒙特卡罗算法生成的合成数据验证该方法,然后在实验原子力光谱数据上部署该方法。融合有效地将通过质量过滤器的痕迹与不可用的痕迹分开,具有高精度的分类曲线,并确定了用户未检测到的展开途径。这项研究证明了机器学习在加速数据分析和产生蛋白质生物物理学新见解方面的潜力。
    We report the application of machine learning techniques to expedite classification and analysis of protein unfolding trajectories from force spectroscopy data. Using kernel methods, logistic regression, and triplet loss, we developed a workflow called Forced Unfolding and Supervised Iterative Online (FUSION) learning where a user classifies a small number of repeatable unfolding patterns encoded as images, and a machine is tasked with identifying similar images to classify the remaining data. We tested the workflow using two case studies on a multidomain XMod-Dockerin/Cohesin complex, validating the approach first using synthetic data generated with a Monte Carlo algorithm and then deploying the method on experimental atomic force spectroscopy data. FUSION efficiently separated traces that passed quality filters from unusable ones, classified curves with high accuracy, and identified unfolding pathways that were undetected by the user. This study demonstrates the potential of machine learning to accelerate data analysis and generate new insights in protein biophysics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    磁镊子是一种单分子力和扭矩光谱技术,能够在体外对生物分子进行机械询问,如核酸和蛋白质。它们使用源自永磁体或电磁体的磁场来吸引磁性颗粒,从而拉伸束缚的生物分子。它们可以很好地补充其他力谱技术,例如光镊子和原子力显微镜(AFM),因为它们可以作为非常稳定的力钳工作,能够在10fN到1nN的非常广泛的力范围内进行长时间的实验,具有1-10毫秒的时间和亚纳米的空间分辨率。他们的简单,鲁棒性,和多功能性使磁性镊子成为单分子生物物理学领域的关键技术,广泛应用于研究的力学性能,例如,核酸,基因组处理分子马达,蛋白质折叠,和核蛋白丝。此外,通过实时和高时空分辨率同时跟踪数百个生物分子,磁镊子允许高通量的单分子测量。磁镊子自然与基于表面的荧光光谱技术相结合,例如全内反射荧光显微镜,在生物分子上实现相关的荧光和力/扭矩光谱。本章介绍了磁镊子,包括硬件的描述,力校准背后的理论,它的时空分辨率,将它与其他技术相结合,和(非详尽的)生物应用概述。
    Magnetic tweezers are a single-molecule force and torque spectroscopy technique that enable the mechanical interrogation in vitro of biomolecules, such as nucleic acids and proteins. They use a magnetic field originating from either permanent magnets or electromagnets to attract a magnetic particle, thus stretching the tethering biomolecule. They nicely complement other force spectroscopy techniques such as optical tweezers and atomic force microscopy (AFM) as they operate as a very stable force clamp, enabling long-duration experiments over a very broad range of forces spanning from 10 fN to 1 nN, with 1-10 milliseconds time and sub-nanometer spatial resolution. Their simplicity, robustness, and versatility have made magnetic tweezers a key technique within the field of single-molecule biophysics, being broadly applied to study the mechanical properties of, e.g., nucleic acids, genome processing molecular motors, protein folding, and nucleoprotein filaments. Furthermore, magnetic tweezers allow for high-throughput single-molecule measurements by tracking hundreds of biomolecules simultaneously both in real-time and at high spatiotemporal resolution. Magnetic tweezers naturally combine with surface-based fluorescence spectroscopy techniques, such as total internal reflection fluorescence microscopy, enabling correlative fluorescence and force/torque spectroscopy on biomolecules. This chapter presents an introduction to magnetic tweezers including a description of the hardware, the theory behind force calibration, its spatiotemporal resolution, combining it with other techniques, and a (non-exhaustive) overview of biological applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌腺苷酸环化酶毒素-溶血素(CyaA)的RTX结构域(毒素中的重复序列)的折叠对于百日咳百日咳杆菌的毒素活性和毒力至关重要。RTX结构域(RD)包含五个RTX嵌段(RTX-i至RTX-v),并且它们的折叠由钙的结合驱动。然而,折叠信号在五个RTX区块内传输的详细分子机制仍然未知。通过结合单分子光学镊子,蛋白质工程和毒素活性测定,在这里,我们证明RD的折叠遵循严格的层次结构,其中折叠从其C端子块RTX-v开始并顺序地朝向N端子RTX-i块进行。我们的结果揭示了一个严格的系列,模板折叠机构,其中折叠信号沿着RD以串联方式从其C端连续传输到N端。由于这种折叠信号传输途径的串联性质,RD的折叠可以在任何给定的RTX块处被破坏,使位于N-末端的RTX块向CyaA的破坏位点和酰化区域展开并消除CyaA的毒素活性。我们的结果揭示了对CyaA分泌和折叠过程的关键机制见解,并可能为设计新疗法以消除CyaA的毒素活性和对抗百日咳杆菌开辟新的潜在途径。
    Folding of the Repeats-in-toxin (RTX) domain of the bacterial adenylate cyclase toxin-hemolysin (CyaA) is critical to its toxin activities and the virulence of the whooping cough agent Bordetella pertussis. The RTX domain (RD) contains five RTX blocks (RTX-i to RTX-v) and their folding is driven by the binding of calcium. However, the detailed molecular mechanism via which the folding signal transmits within the five RTX blocks remains unknown. By combining single molecule optical tweezers, protein engineering, and toxin activity assays, here we demonstrate that the folding of the RD follows a strict hierarchy, with the folding starting from its C-terminal block RTX-v and proceeding towards the N-terminal RTX-i block sequentially. Our results reveal a strict series, templated folding mechanism, where the folding signal is transmitted along the RD in a series fashion from its C terminus continuously to the N terminus. Due to the series nature of this folding signal transmission pathway, the folding of RD can be disrupted at any given RTX block, rendering the RTX blocks located N-terminally to the disruption site and the acylation region of CyaA unfolded and abolishing CyaA\'s toxin activities. Our results reveal key mechanistic insights into the secretion and folding process of CyaA and may open up new potential avenues towards designing new therapeutics to abolish toxin activity of CyaA and combat B. pertussis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米孔是多功能的单分子传感器,可用于感测越来越复杂的结构化分子混合物,并应用于分子数据存储和疾病生物标志物检测。然而,增加的分子复杂性给纳米孔数据的分析带来了额外的挑战,包括更多的易位事件因不匹配预期的信号结构而被拒绝,以及选择偏差进入此事件管理过程的更大风险。为了突出这些挑战,在这里,我们介绍了由连接到线性DNA载体的纳米结构DNA分子组成的模型分子系统的分析。我们利用Nanolyzer事件分割功能的最新进展,提供用于纳米孔事件拟合的图形分析工具,并描述事件子结构分析的方法。在这个过程中,我们确定并讨论了在此分子系统分析中出现的选择偏差的重要来源,并考虑了分子构象和可变实验条件的复杂影响(例如,孔径)。然后,我们对现有的分析技术进行了进一步的改进,允许改善多重样品的分离,更少的易位事件被拒绝为假阴性,以及可以提取准确分子信息的更广泛的实验条件。增加纳米孔数据中分析事件的覆盖率不仅对于以高保真度表征复杂分子样品很重要,而且对于生成准确的分子样品也变得至关重要。作为数据分析和事件识别的机器学习方法,无偏训练数据的患病率继续增加。
    Nanopores are versatile single-molecule sensors that are being used to sense increasingly complex mixtures of structured molecules with applications in molecular data storage and disease biomarker detection. However, increased molecular complexity presents additional challenges to the analysis of nanopore data, including more translocation events being rejected for not matching an expected signal structure and a greater risk of selection bias entering this event curation process. To highlight these challenges, here, we present the analysis of a model molecular system consisting of a nanostructured DNA molecule attached to a linear DNA carrier. We make use of recent advances in the event segmentation capabilities of Nanolyzer, a graphical analysis tool provided for nanopore event fitting, and describe approaches to the event substructure analysis. In the process, we identify and discuss important sources of selection bias that emerge in the analysis of this molecular system and consider the complicating effects of molecular conformation and variable experimental conditions (e.g., pore diameter). We then present additional refinements to existing analysis techniques, allowing for improved separation of multiplexed samples, fewer translocation events rejected as false negatives, and a wider range of experimental conditions for which accurate molecular information can be extracted. Increasing the coverage of analyzed events within nanopore data is not only important for characterizing complex molecular samples with high fidelity but is also becoming essential to the generation of accurate, unbiased training data as machine-learning approaches to data analysis and event identification continue to increase in prevalence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号