Silicon carbide

碳化硅
  • 文章类型: Journal Article
    4H-碳化硅中的硅空位(VSi)中心由于其强大的电子和光学特性而成为量子网络应用的强大候选者。包括一个长的自旋相干寿命和明亮,稳定的排放。这里,我们报告了VSi中心与等离子体纳米腔的整合,以增强Purcell的发射,这对于可扩展的量子网络至关重要。采用简单的制造工艺,我们证明了等离子体腔支持纳米级模式体积,并表现出自发发射速率的增加,测得的Purcell因子高达48。除了研究光学共振模式,我们证明了相对于辐射限制值,保留自旋的共振光学跃迁的光学稳定性得到了改善。结果突出了纳米光子结构在推进量子网络技术方面的潜力,并强调了优化发射器-腔相互作用对于有效量子光子应用的重要性。
    Silicon vacancy (VSi) centers in 4H-silicon carbide have emerged as a strong candidate for quantum networking applications due to their robust electronic and optical properties, including a long spin coherence lifetime and bright, stable emission. Here, we report the integration of VSi centers with a plasmonic nanocavity to Purcell enhance the emission, which is critical for scalable quantum networking. Employing a simple fabrication process, we demonstrate plasmonic cavities that support a nanoscale mode volume and exhibit an increase in the spontaneous emission rate with a measured Purcell factor of up to 48. In addition to investigating the optical resonance modes, we demonstrate an improvement in the optical stability of the spin-preserving resonant optical transitions relative to the radiation-limited value. The results highlight the potential of nanophotonic structures for advancing quantum networking technologies and emphasize the importance of optimizing emitter-cavity interactions for efficient quantum photonic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二维超声辅助磨削(2D-UAG)在提高硬脆材料的加工质量方面具有优势。然而,由于复杂的材料去除行为,该过程中的研磨机理尚未完全揭示。在这项研究中,进行了碳化硅的多步骤2D-UAG实验,以研究加工参数对表面质量的影响。实验结果表明,刀具振幅和工件振幅对表面粗糙度具有相似的影响。在粗磨阶段,随着超声振幅的增加,表面粗糙度不断降低,材料主要通过具有不同表面缺陷的脆性断裂来去除。在半精加工和精加工研磨步骤下,随着工具振幅或工件振幅从0μm增加到8μm,并且拐点出现在4μm左右,表面粗糙度首先下降,然后增加。表面损伤包含具有带状分布和局部凹槽的小尺寸凹坑。此外,切削参数对表面质量的影响与常规磨削相似。还基于运动学分析提供了对实验现象的潜在机制的讨论。研究结论可为硬脆材料2D-UAG加工参数的优化提供参考。
    Two-dimensional ultrasonic-assisted grinding (2D-UAG) has exhibited advantages in improving the machining quality of hard and brittle materials. However, the grinding mechanism in this process has not been thoroughly revealed due to the complicated material removal behaviors. In this study, multi-step 2D-UAG experiments of silicon carbide are conducted to investigate the effects of machining parameters on surface quality. The experimental results demonstrate that the tool amplitude and the workpiece amplitude have similar effects on surface roughness. In the rough grinding stage, the surface roughness decreases continuously with increasing ultrasonic amplitudes and the material is mainly removed by brittle fracture with different surface defects. Under semi-finishing and finishing grinding steps, the surface roughness first declines and then increases as the tool amplitude or workpiece amplitude grows from 0 μm to 8 μm and the inflection point appears around 4 μm. The surface damage contains small-sized pits with band-like distribution and localized grooves. Furthermore, the influences of cutting parameters on surface quality are similar to those in conventional grinding. Discussions of the underlying mechanisms for the experimental phenomena are also provided based on kinematic analysis. The conclusions gained in this study can provide references for the optimization of machining parameters in 2D-UAG of hard and brittle materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    外延双层石墨烯,通过化学气相沉积在没有硅升华的SiC衬底上生长,是石墨烯场效应晶体管(GFET)的关键材料。严格的表征方法,如原子力显微镜和拉曼光谱,确认这种石墨烯的特殊质量。后纳米加工,对直流和高频特性的广泛评估可以提取关键参数,例如百种晶体管的电流增益(fmax)和截止频率(ft)。拉曼光谱分析提供了对材料性质的见解,这与霍尔迁移率相关,载流子密度,接触电阻和薄层电阻,突出石墨烯的固有特性。GFET的性能显示分散,通过多个晶体管的表征证实。由于拉曼分析显示相对均匀的表面,霍尔机动性的变化,晶片上的载流子密度和接触电阻表明,GFET晶体管性能的分散可能与制造过程有关。这种见解在集成电路中尤其重要,由于电感等电路元件的存在,一致的晶体管性能至关重要,电容和共面波导通常分布在同一晶片上。
    Epitaxial bilayer graphene, grown by chemical vapor deposition on SiC substrates without silicon sublimation, is crucial material for graphene field effect transistors (GFETs). Rigorous characterization methods, such as atomic force microscopy and Raman spectroscopy, confirm the exceptional quality of this graphene. Post-nanofabrication, extensive evaluation of DC and high-frequency properties enable the extraction of critical parameters such as the current gain (fmax) and cut-off frequency (ft) of hundred transistors. The Raman spectra analysis provides insights into material property, which correlate with Hall mobilities, carrier densities, contact resistance and sheet resistance and highlights graphene\'s intrinsic properties. The GFETs\' performance displays dispersion, as confirmed through the characterization of multiple transistors. Since the Raman analysis shows relatively homogeneous surface, the variation in Hall mobility, carrier densities and contact resistance cross the wafer suggest that the dispersion of GFET transistor\'s performance could be related to the process of fabrication. Such insights are especially critical in integrated circuits, where consistent transistor performance is vital due to the presence of circuit elements like inductance, capacitance and coplanar waveguides often distributed across the same wafer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项研究中,为了提高切屑的切割效率和精度,同时最大限度地减少切割损坏造成的浪费,分子动力学模拟研究了碳化硅晶体激光隐身切割过程中缺陷和裂纹的形成机理。结果表明,激光扫描产生的高热应力会导致裂纹的产生和扩展。因此,裂纹沿[100]的方向传播,并随后在[101]和[101]的方向上形成分支。还可以发现,碳化硅晶体产生位错滑移,位错线沿着滑动面移动,这阻碍了裂纹在[101]和[101]方向的扩展。此外,原子相变和损耗是在激光加热过程的高温环境下发生的。立方金刚石晶体结构原子部分转化为无定形结构,而一小部分转变为六角形钻石结构。由于预制缺陷,晶体结构排列有序度暂时增加,然后迅速下降,并产生新的未知晶体结构。
    In this study, to enhance the cutting efficiency and precision of the chip while minimizing waste from cutting damage, molecular dynamics simulation is used to investigate the formation mechanism of defects and cracks of silicon carbide crystals during the laser stealth dicing. The results showed that the high thermal stress generated by the laser scanning induced the production and expansion of cracks. Thus, the crack propagates in the direction of [100], and subsequently forms branches in the directions of [101] and [101‾]. It also can be found that the silicon carbide crystals produced dislocation slip, and the dislocation lines moved along the slip surface, which impeded the crack extension in the directions of [101‾] and [1‾01‾]. In addition, atomic phase transformation and loss is occurred under the high-temperature environment of the laser heating process. Cubic diamond crystal structure atoms are partially transformed into amorphous structure, while a small portion transformed into hexagonal diamond structure. The crystal structural arranged orderliness temporarily increased and then rapidly decreased due to prefabrication defects, and new unknown crystal structures are produced.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    固态量子发射器是分布式量子技术中的主要候选者,因为它们固有地提供自旋-光子界面。该领域的持续挑战,然而,是由于典型主体材料的高折射率而导致的低光子提取。使用光子结构可以克服这个挑战。这里,我们报告了V2中心在基于腔的光学天线中的集成。该结构由镀银,135nm薄的4H-SiC膜用作具有宽带共振的平面腔,理论光子收集增强因子为〜34。平面几何形状使我们能够在室温下识别20多个单个V2中心,平均(最大)计数率增强因子为9(15)。此外,在低温下,我们观察到10个V2中心的平均吸收线宽低于80MHz。这些结果证明了对横向发射器位置具有鲁棒性的光子收集增强。
    Solid state quantum emitters are a prime candidate in distributed quantum technologies since they inherently provide a spin-photon interface. An ongoing challenge in the field, however, is the low photon extraction due to the high refractive index of typical host materials. This challenge can be overcome using photonic structures. Here, we report the integration of V2 centers in a cavity-based optical antenna. The structure consists of a silver-coated, 135 nm-thin 4H-SiC membrane functioning as a planar cavity with a broadband resonance yielding a theoretical photon collection enhancement factor of ∼34. The planar geometry allows us to identify over 20 single V2 centers at room temperature with a mean (maximum) count rate enhancement factor of 9 (15). Moreover, we observe 10 V2 centers with a mean absorption line width below 80 MHz at cryogenic temperatures. These results demonstrate a photon collection enhancement that is robust to the lateral emitter position.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    宽隙半导体中的高自旋缺陷(色心)由于其自旋的独特组合而被认为是实现量子技术的基础,光学,charge,和连贯的属性。碳化硅(SiC)晶体可以充当各种光学活性空位型缺陷的基质,它们表现为单光子源或自旋量子比特。在缺陷中,氮空位中心(NV)是特别重要的。本文致力于在高频范围(94GHz)上应用光诱导电子顺磁共振(EPR)和电子-核双共振(ENDOR)技术,以获得有关NV缺陷的性质和性质的独特信息。六角形4H和6H多型体的SiC晶体。通过微波和射频脉冲的选择性激发可以确定颜色中心的微观结构,零场分裂常数(D=1.2-1.3GHz),相位相干时间(T2),以及超精细(≈1.1MHz)和四极(Cq≈2.45MHz)相互作用的值,并定义了电子-核相互作用的各向同性(a=-1.2MHz)和各向异性(b=10-20kHz)贡献。获得的数据对于在SiC中实现NV缺陷作为量子寄存器至关重要,使电子自旋的光学初始化建立自旋-光子界面。此外,光学的组合,微波炉,和对SiC晶体内自旋中心的射频谐振效应显示了采用脉冲EPR和ENDOR序列来实现量子计算算法和门的协议的潜力。
    High-spin defects (color centers) in wide-gap semiconductors are considered as a basis for the implementation of quantum technologies due to the unique combination of their spin, optical, charge, and coherent properties. A silicon carbide (SiC) crystal can act as a matrix for a wide variety of optically active vacancy-type defects, which manifest themselves as single-photon sources or spin qubits. Among the defects, the nitrogen-vacancy centers (NV) are of particular importance. This paper is devoted to the application of the photoinduced electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) techniques at a high-frequency range (94 GHz) to obtain unique information about the nature and properties of NV defects in SiC crystal of the hexagonal 4H and 6H polytypes. Selective excitation by microwave and radio frequency pulses makes it possible to determine the microscopic structure of the color center, the zero-field splitting constant (D = 1.2-1.3 GHz), the phase coherence time (T2), and the values of hyperfine (≈1.1 MHz) and quadrupole (Cq ≈ 2.45 MHz) interactions and to define the isotropic (a = -1.2 MHz) and anisotropic (b = 10-20 kHz) contributions of the electron-nuclear interaction. The obtained data are essential for the implementation of the NV defects in SiC as quantum registers, enabling the optical initialization of the electron spin to establish spin-photon interfaces. Moreover, the combination of optical, microwave, and radio frequency resonant effects on spin centers within a SiC crystal shows the potential for employing pulse EPR and ENDOR sequences to implement protocols for quantum computing algorithms and gates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本文介绍了还原氧化石墨烯对使用放电等离子烧结方法烧结的碳化硅基复合材料的机械性能的影响。对所生产的烧结物进行三点弯曲试验。观察到弯曲强度增加,对于SiC-2wt。与参考SiC样品的323MPa相比,%rGO复合材料。复合材料的硬度随着rGO含量的增加而降低,降至1475HV10,这与密度结果相关。由于rGO团聚体的存在,测得的断裂韧性值具有高的标准偏差。KIC达到3.22-3.82MPa*m1/2范围内的值。确定了导致复合材料断裂韧性增加的三种主要机制:桥接,偏转,和裂缝的分支。结果表明,还原氧化石墨烯可以作为SiC基体的增强相,对弯曲强度有特别明显的影响。
    This article presents research on the influence of reduced graphene oxide on the mechanical properties of silicon carbide matrix composites sintered with the use of the Spark Plasma Sintering method. The produced sinters were subjected to a three-point bending test. An increase in flexural strength was observed, which reaches a maximum value of 503.8 MPa for SiC-2 wt.% rGO composite in comparison to 323 MPa for the reference SiC sample. The hardness of composites decreases with the increase in rGO content down to 1475 HV10, which is correlated with density results. Measured fracture toughness values are burdened with a high standard deviation due to the presence of rGO agglomerates. The KIC reaches values in the range of 3.22-3.82 MPa*m1/2. Three main mechanisms responsible for the increase in the fracture toughness of composites were identified: bridging, deflecting, and branching of cracks. Obtained results show that reduced graphene oxide can be used as a reinforcing phase to the SiC matrix, with an especially visible impact on flexural strength.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过优化的半导体结构追求提高光电能量转换效率仍然具有很强的竞争力,目前的结果还没有达到广泛的预期。在这项研究中,我们发现p-3C-SiC纳米膜在p-Si/n-Si双结(DJ)异质结构上的光电流性能显着提高,该结构集成了p-3C-SiC/p-Si异质结和p-Si/n-Si同质结。垂直光电流(VPC)和垂直光响应率在DJ异质结构中表现出明显的增强,与p-3C-SiC/n-Si单结(SJ)对应物相比,最多可超过43倍。两种异质结构的p-3C-SiC层和n-Si衬底具有相似的材料和几何特性。更重要的是,DJ和SJ异质结构器件的制造成本相当。我们的研究结果表明,在能量采集器中使用DJ设备具有巨大的潜力,微/纳米机电系统,和传感应用。这项研究还可能导致使用DJ结构的先进光电器件的创建,其中采用各种半导体材料,以实现卓越的性能,通过应用的概念和理论模型中描述的这项工作。
    The pursuit of increased efficiency of photoelectric energy conversion through optimized semiconductor structures remains highly competitive, with current results yet to align with broad expectations. In this study, we discover a significant enhancement in photocurrent performance of a p-3C-SiC nanothin film on p-Si/n-Si double junction (DJ) heterostructure that integrates p-3C-SiC/p-Si heterojunction and p-Si/n-Si homojunction. The vertical photocurrent (VPC) and vertical photoresponsivity exhibit a substantial enhancement in the DJ heterostructure, surpassing by a maximum of 43-fold compared to the p-3C-SiC/n-Si single junction (SJ) counterpart. The p-3C-SiC layer and n-Si substrate of the two heterostructures have similar material and geometrical properties. More importantly, the fabrication costs for the DJ and SJ heterostructure devices are comparable. Our results demonstrate a significant potential for using DJ devices in energy harvesters, micro/nano electromechanical systems, and sensing applications. This research may also lead to the creation of advanced optoelectronic devices using DJ structures, where employing various semiconductor materials to achieve exceptional performance through the application of the concept and theoretical model described in this work.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在本文中,提出了一种新型的具有分裂栅的4H-SiC深沟槽超结MOSFET(金属氧化物半导体场效应晶体管),并通过SentaurusTCAD仿真进行了理论验证。填充有与P-SiC区结合的P-poly-Si的深沟槽导致电荷平衡效应。代替传统超结MOSFET中的全SiCP区,这种新结构减少了超结MOSFET中的P区,从而有助于降低特定的导通电阻。因此,品质因数(FoM,BV2/Ron,建议的新结构的sp)比C-MOS和SJ-MOS高642%和39.65%,分别。
    In this paper, a novel 4H-SiC deep-trench super-junction MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) with a split-gate is proposed and theoretically verified by Sentaurus TCAD simulations. A deep trench filled with P-poly-Si combined with the P-SiC region leads to a charge balance effect. Instead of a full-SiC P region in conventional super-junction MOSFET, this new structure reduces the P region in a super-junction MOSFET, thus helping to lower the specific on-resistance. As a result, the figure of merit (FoM, BV2/Ron,sp) of the proposed new structure is 642% and 39.65% higher than the C-MOS and the SJ-MOS, respectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项研究中,制定了基于碳化硅(SiC)纳米颗粒的序列化印刷油墨,以制造高灵敏度和宽温度范围的印刷热敏电阻。使用商业上可用的银油墨将叉指状电极(IDE)丝网印刷到Kapton®基材上。将具有不同重量比的SiC纳米颗粒的热敏电阻油墨印刷在IDE结构的顶上以形成完全印刷的热敏电阻。热敏电阻在25°C至170°C的宽温度范围内进行测试,在连续运行15小时内表现出优异的可重复性和稳定性。使用30wt。%SiC-聚酰亚胺油墨。我们报告了高度敏感的器件,其TCR为-0.556%/°C,热系数为502K(β指数),活化能为0.08eV。Further,热敏电阻的精度为±1.35°C,这是完全在由市售高灵敏度热敏电阻提供的范围内。SiC热敏电阻由于相对湿度在10%至90%RH之间的变化而表现出较小的6.5%漂移,并且在40°角度下进行100次激进弯曲测试后,基线电阻漂移为4.2%。使用市售的低成本材料,简单的设计和制造技术,加上Kapton®基板和SiC纳米粒子的化学惰性,为使用全印刷SiC热敏电阻实现广泛的应用铺平了道路,在这些应用中,温度监测对于优化系统性能至关重要。
    In this study, Silicon Carbide (SiC) nanoparticle-based serigraphic printing inks were formulated to fabricate highly sensitive and wide temperature range printed thermistors. Inter-digitated electrodes (IDEs) were screen printed onto Kapton® substrate using commercially avaiable silver ink. Thermistor inks with different weight ratios of SiC nanoparticles were printed atop the IDE structures to form fully printed thermistors. The thermistors were tested over a wide temperature range form 25 °C to 170 °C, exhibiting excellent repeatability and stability over 15 h of continuous operation. Optimal device performance was achieved with 30 wt.% SiC-polyimide ink. We report highly sensitive devices with a TCR of -0.556%/°C, a thermal coefficient of 502 K (β-index) and an activation energy of 0.08 eV. Further, the thermistor demonstrates an accuracy of ±1.35 °C, which is well within the range offered by commercially available high sensitivity thermistors. SiC thermistors exhibit a small 6.5% drift due to changes in relative humidity between 10 and 90%RH and a 4.2% drift in baseline resistance after 100 cycles of aggressive bend testing at a 40° angle. The use of commercially available low-cost materials, simplicity of design and fabrication techniques coupled with the chemical inertness of the Kapton® substrate and SiC nanoparticles paves the way to use all-printed SiC thermistors towards a wide range of applications where temperature monitoring is vital for optimal system performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号