Signaling molecules

  • 文章类型: Journal Article
    作为固着生物,植物不断面临各种非生物胁迫,比如干旱,盐度,和金属/类金属毒性,所有这些都对植物生长和产量潜力具有重大威胁。提高植物对这种非生物胁迫的抵抗力对于在全球范围内实施可持续农业至关重要。乙酸/乙酸盐已被认为是一种重要的代谢产物,在调节植物对多种非生物胁迫的适应中具有多方面的作用。最近的研究表明,乙酸可以通过调节脂质代谢来增强植物抵抗非生物胁迫的不利影响的固有机制。激素信号,表观遗传变化,和生理防御机制。许多研究也支持乙酸在不利环境条件下促进作物生产的潜在用途。这篇综述提供了对乙酸如何调节植物光合作用的理解的全面更新,作为一种抗蒸剂,解毒活性氧以减轻氧化应激,与植物激素相互作用来调节生理过程,提高土壤肥力和微生物多样性,特别关注干旱,盐度,和金属毒性。我们还强调了乙酸的生态友好和经济潜力,这可能会吸引发展中国家的农民利用乙酸应用的好处来提高农作物的非生物胁迫抗性。鉴于乙酸是一种广泛获得的,便宜,和环保化合物,乙酸介导的调节途径及其与其他信号分子的串扰的揭示对于制定减轻作物非生物胁迫的可持续策略具有重要意义。
    As sessile organisms, plants constantly face a variety of abiotic stresses, such as drought, salinity, and metal/metalloid toxicity, all of which possess significant threats to plant growth and yield potential. Improving plant resilience to such abiotic stresses bears paramount importance in practicing sustainable agriculture worldwide. Acetic acid/acetate has been recognized as an important metabolite with multifaceted roles in regulating plant adaptation to diverse abiotic stresses. Recent studies have elucidated that acetic acid can potentiate plants\' inherent mechanisms to withstand the adverse effects of abiotic stresses through the regulation of lipid metabolism, hormone signaling, epigenetic changes, and physiological defense mechanisms. Numerous studies also underpin the potential use of acetic acid in boosting crop production under unfavorable environmental conditions. This review provides a comprehensive update on the understanding of how acetic acid regulates plant photosynthesis, acts as an antitranspirant, detoxifies reactive oxygen species to alleviate oxidative stress, interacts with phytohormones to regulate physiological processes, and improves soil fertility and microbial diversity, with a specific focus on drought, salinity, and metal toxicity. We also highlight the eco-friendly and economic potential of acetic acid that may attract farmers from developing countries to harness the benefits of acetic acid application for boosting abiotic stress resistance in crops. Given that acetic acid is a widely accessible, inexpensive, and eco-friendly compound, the revelation of acetic acid-mediated regulatory pathways and its crosstalk with other signaling molecules will have significant importance in developing a sustainable strategy for mitigating abiotic stresses in crops.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铜绿假单胞菌由于其高毒力和致病性,在全球范围内被认为是一种值得关注的机会性病原体。尤其是在免疫受损的个体中。虽然研究已经确定了几种内源性群体感应(QS)信号分子,增强铜绿假单胞菌的毒力和致病性,对外源性QS信号分子或调节因子的研究仍然有限.本研究发现多巴胺作为外源性QS信号分子或铜绿假单胞菌PAO1的调节因子,增强毒力因子和生物膜的产生。与对照组相比,用40μM多巴胺处理可使生物膜形成增加33.1%,游泳机动性增加68.1%,蜂群机动性增加63.1%,信号分子3-氧代-C12-HSL增加147.2%,50.5%,28.5%,27.0%,海藻酸盐毒力因子增加33.2%,鼠李糖脂,蛋白酶,和绿脓苷,分别。本研究进一步探讨多巴胺通过转录组和代谢组调节铜绿假单胞菌PAO1生物膜形成和毒力的机制。转录组分析表明多巴胺促进毒力基因psl的表达,alg,拉萨,rhlABC,rml,和phz在铜绿假单胞菌PAO1中。代谢组学分析显示色氨酸浓度的变化,丙酮酸,乙醇胺,甘氨酸,3-羟基丁酸,还有Alizarin.此外,改变的基因和代谢物的KEGG富集分析表明多巴胺增强了苯丙氨酸,酪氨酸,铜绿假单胞菌PAO1中的色氨酸。这项研究的结果将有助于开发新的外源性QS信号分子或调节因子,并促进我们对铜绿假单胞菌与宿主环境之间相互作用的理解。
    Pseudomonas aeruginosa is recognized globally as an opportunistic pathogen of considerable concern due to its high virulence and pathogenicity, especially in immunocompromised individuals. While research has identified several endogenous quorum sensing (QS) signaling molecules that enhance the virulence and pathogenicity of P. aeruginosa, investigations on exogenous QS signaling molecules or modulating factors remain limited. This study found that dopamine serves as an exogenous QS signaling molecule or modulating factor of P. aeruginosa PAO1, enhancing the production of virulence factors and biofilms. Compared to the control group, treatment with 40 μM dopamine resulted in a 33.1 % increase in biofilm formation, 68.1 % increase in swimming mobility, 63.1 % increase in swarming mobility, 147.2 % increase in the signaling molecule 3-oxo-C12-HSL, and 50.5 %, 28.5 %, 27.0 %, and 33.2 % increases in the virulence factors alginate, rhamnolipids, protease, and pyocyanin, respectively. This study further explored the mechanism of dopamine regulating the biofilm formation and virulence of P. aeruginosa PAO1 through transcriptome and metabolome. Transcriptomic analysis showed that dopamine promoted the expression of virulence genes psl, alg, lasA, rhlABC, rml, and phz in P. aeruginosa PAO1. Metabolomic analysis revealed changes in the concentrations of tryptophan, pyruvate, ethanolamine, glycine, 3-hydroxybutyric acid, and alizarin. Furthermore, KEGG enrichment analysis of altered genes and metabolites indicated that dopamine enhanced phenylalanine, tyrosine, and tryptophan in P. aeruginosa PAO1. The results of this study will contribute to the development of novel exogenous QS signaling molecules or modulating factors and advance our understanding of the interactions between P. aeruginosa and the host environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脑中的乳酸是内源性和外源性产生的。在脑中产生乳酸的主要功能细胞是星形胶质细胞。星形胶质细胞释放乳酸作用于神经元,从而影响神经元功能,通过一个被称为星形胶质细胞-神经元穿梭的过程。乳酸也影响小胶质细胞功能并抑制小胶质细胞介导的神经炎症。乳酸也提供能量,作为信号分子,并促进神经发生。本文综述了乳酸在细胞中的作用,动物,和人类。乳酸盐是在健康生物体和脑部疾病早期阶段对抗应激的保护性分子。因此,乳酸可能是脑部疾病的潜在治疗靶点。进一步研究乳酸在小胶质细胞中的作用可能具有很大的前景。本文为乳酸在脑疾患中的研究提供了新的视角和研究方向。
    Lactate in the brain is produced endogenously and exogenously. The primary functional cells that produce lactate in the brain are astrocytes. Astrocytes release lactate to act on neurons, thereby affecting neuronal function, through a process known as the astrocyte-neuron shuttle. Lactate affects microglial function as well and inhibits microglia-mediated neuroinflammation. Lactate also provides energy, acts as a signaling molecule, and promotes neurogenesis. This article summarizes the role of lactate in cells, animals, and humans. Lactate is a protective molecule against stress in healthy organisms and in the early stages of brain disorders. Thus, lactate may be a potential therapeutic target for brain disorders. Further research on the role of lactate in microglia may have great prospects. This article provides a new perspective and research direction for the study of lacate in brain disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    间充质干细胞(MSCs)治疗,作为一个快速发展的医学领域,对各种医疗条件的治疗有很大的希望。MSCs是多能干细胞,可以从各种组织中分离,可以自我更新和分化。它们分泌细胞因子和营养因子,从而产生再生微环境并具有免疫调节特性。尽管已经在各种疾病中使用MSCs进行了临床试验,关于这些细胞恶性转化的可能性的担忧已经被提出。研究表明,在MSC移植后的实验模型中,血液恶性肿瘤和致癌率较高。MSCs恶性转化的潜在机制是复杂的,尚未完全了解,但它们被认为涉及特殊信号分子的存在和细胞行为调节途径的改变。导致MSCs\'致癌转化的可能途径通过两种机制发生:自发和受激恶性转化,包括细胞融合,融合蛋白,和肿瘤微环境。基于MSC的疗法有可能彻底改变医学,解决恶性肿瘤问题对于确保其安全性和有效性至关重要。因此,本综述旨在总结MSCs恶性转化的可能机制。[图:见文本]。
    Mesenchymal stem cell (MSCs) therapy, as a rapidly developing area of medicine, holds great promise for the treatment of a variety of medical conditions. MSCs are multipotent stem cells that can be isolated from various tissues and could self-renew and differentiate. They secrete cytokines and trophic factors that create a regenerative microenvironment and have immunomodulatory properties. Although clinical trials have been conducted with MSCs in various diseases, concerns regarding the possibility of malignant transformation of these cells have been raised. The studies showed a higher rate of hematological malignancy and carcinogenesis in experimental models after MSC transplantation. The mechanisms underlying malignant transformation of MSCs are complex and not fully understood, but they are believed to involve the presence of special signaling molecules and alterations in cell behavior regulation pathways. Possible pathways that lead to MSCs\' oncogenic transformation occur through two mechanisms: spontaneous and stimulated malignant transformation, including cell fusion, fusion proteins, and the tumor microenvironment. MSC-based therapies have the potential to revolutionize medicine, and addressing the issue of malignancy is crucial to ensure their safety and efficacy. Therefore, the purpose of the present review is to summarize the potential mechanisms of the malignant transformation of MSCs. [Figure: see text].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物健康监测对于了解环境压力(生物和非生物)对作物生产的影响至关重要。并相应地调整植物的发育和适应性反应。植物经常暴露于病原体和土壤污染物(重金属和农药)等不同的胁迫源,这对植物的生存和人类健康构成严重威胁。植物具有通过经历快速转录来响应环境胁迫的能力,翻译,和代谢重编程在不同的细胞区室,以平衡生长和适应性反应。然而,植物对环境线索的特殊反应是非常复杂的,它由不同的信号分子驱动,如钙Ca2+,活性氧(ROS),荷尔蒙,小肽和代谢物。此外,pH等其他因素也会影响这些反应。这些植物信号分子的调节和发生通常是不可检测的,需要非破坏性的,活的研究方法,以了解其在生长和胁迫条件下的分子复杂性和功能特征。随着传感器的出现,在体内和体外理解一些与植物生理学相关的过程,信令,新陈代谢,和发展提供了一个新的平台,不仅为解码信号通路的生化复杂性,而且为有针对性的工程,以改善不同的植物性状。传感器在重金属和农药等病原体和土壤污染物检测中的应用对保护植物和人类健康起着关键作用。在这次审查中,我们提供了植物生物学中用于检测多种信号分子及其功能属性的传感器的更新。我们还讨论了农业中用于检测农药的不同类型的传感器(生物传感器和纳米传感器),病原体和污染物。
    Plant health monitoring is essential for understanding the impact of environmental stressors (biotic and abiotic) on crop production, and for tailoring plant developmental and adaptive responses accordingly. Plants are constantly exposed to different stressors like pathogens and soil pollutants (heavy metals and pesticides) which pose a serious threat to their survival and to human health. Plants have the ability to respond to environmental stressors by undergoing rapid transcriptional, translational, and metabolic reprogramming at different cellular compartments in order to balance growth and adaptive responses. However, plants\' exceptional responsiveness to environmental cues is highly complex, which is driven by diverse signaling molecules such as calcium Ca2+, reactive oxygen species (ROS), hormones, small peptides and metabolites. Additionally, other factors like pH also influence these responses. The regulation and occurrence of these plant signaling molecules are often undetectable, necessitating nondestructive, live research approaches to understand their molecular complexity and functional traits during growth and stress conditions. With the advent of sensors, in vivo and in vitro understanding of some of these processes associated with plant physiology, signaling, metabolism, and development has provided a novel platform not only for decoding the biochemical complexity of signaling pathways but also for targeted engineering to improve diverse plant traits. The application of sensors in detecting pathogens and soil pollutants like heavy metal and pesticides plays a key role in protecting plant and human health. In this review, we provide an update on sensors used in plant biology for the detection of diverse signaling molecules and their functional attributes. We also discuss different types of sensors (biosensors and nanosensors) used in agriculture for detecting pesticides, pathogens and pollutants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米技术在本世纪迅速发展,纳米颗粒的工业用途在农业等不同行业的现代化中获得新的应用,电子,食物,能源,环境,医疗保健和医药呈指数级增长。尽管几种纳米粒子在不同行业的应用,它们对生物系统产生有害影响,尤其是在植物中。已经提出了纳米颗粒毒性作用的各种机制;然而,包括自由基在内的活性氧(ROS)分子水平升高[(例如,超氧化物(O2•-),过氧(HOO•),和羟基(HO•)和非自由基[(例如,过氧化氢(H2O2)和单线态氧(1O2)更为重要。细胞中ROS的过度产生和积累以及随后的氧化应激诱导破坏生理过程和细胞氧化还原反应的正常功能。ROS过量生产的一些后果包括脂质的过氧化,蛋白质结构的变化,DNA链断裂,线粒体损伤,细胞死亡。具有清除ROS能力的关键酶抗氧化剂包括超氧化物歧化酶(SOD),过氧化氢酶(CAT),抗坏血酸过氧化物酶(APX),过氧化物酶(POD),和谷胱甘肽还原酶(GR),和非酶抗氧化系统,包括α-生育酚,黄酮类化合物,酚类化合物,类胡萝卜素,抗坏血酸,谷胱甘肽通过平衡氧化还原反应和降低ROS水平在解毒和维持植物健康中起着至关重要的作用。这篇综述提供了令人信服的证据,表明纳米颗粒的植物毒性,主要是由于暴露后ROS的过量产生。此外,本综述还总结了植物对纳米颗粒在植物细胞内积累的内在解毒机制。
    Nanotechnology is advancing rapidly in this century and the industrial use of nanoparticles for new applications in the modernization of different industries such as agriculture, electronic, food, energy, environment, healthcare and medicine is growing exponentially. Despite applications of several nanoparticles in different industries, they show harmful effects on biological systems, especially in plants. Various mechanisms for the toxic effects of nanoparticles have already been proposed; however, elevated levels of reactive oxygen species (ROS) molecules including radicals [(e.g., superoxide (O2•‒), peroxyl (HOO•), and hydroxyl (HO•) and non-radicals [(e.g., hydrogen peroxide (H2O2) and singlet oxygen (1O2) is more important. Excessive production/and accumulation of ROS in cells and subsequent induction of oxidative stress disrupts the normal functioning of physiological processes and cellular redox reactions. Some of the consequences of ROS overproduction include peroxidation of lipids, changes in protein structure, DNA strand breaks, mitochondrial damage, and cell death. Key enzymatic antioxidants with ROS scavenging ability comprised of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), and glutathione reductase (GR), and non-enzymatic antioxidant systems including alpha-tocopherol, flavonoids, phenolic compounds, carotenoids, ascorbate, and glutathione play vital role in detoxification and maintaining plant health by balancing redox reactions and reducing the level of ROS. This review provides compelling evidence that phytotoxicity of nanoparticles, is mainly caused by overproduction of ROS after exposure. In addition, the present review also summarizes the intrinsic detoxification mechanisms in plants in response to nanoparticles accumulation within plant cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在全球减少二氧化碳排放的努力中,污染物降解的同时增强和化石燃料消耗的减少是微藻介导的废水处理的关键方面。明确了污染物处理过程中细菌和微藻的降解机理,以及监管生物脂质生产,可以提高过程的可持续性。本文介绍了微藻与细菌之间的协同和抑制关系。还综述了可以调节微藻生物脂质积累的不同刺激剂。描述了在实验室和开放池塘中利用微藻和细菌的废水处理技术,以概述其在处理含重金属废水中的应用。畜牧业废水,制药废水,和纺织染料废水。最后,总结了扩大生物质梯级利用和能源回收的主要要求,以促进废水生物处理的发展。
    In the global effort to reduce CO2 emissions, the concurrent enhancement of pollutant degradation and reductions in fossil fuel consumption are pivotal aspects of microalgae-mediated wastewater treatment. Clarifying the degradation mechanisms of bacteria and microalgae during pollutant treatment, as well as regulatory biolipid production, could enhance process sustainability. The synergistic and inhibitory relationships between microalgae and bacteria are introduced in this paper. The different stimulators that can regulate microalgal biolipid accumulation are also reviewed. Wastewater treatment technologies that utilize microalgae and bacteria in laboratories and open ponds are described to outline their application in treating heavy metal-containing wastewater, animal husbandry wastewater, pharmaceutical wastewater, and textile dye wastewater. Finally, the major requirements to scale up the cascade utilization of biomass and energy recovery are summarized to improve the development of biological wastewater treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物及其衍生的植物化学物质具有数十年来治疗多种疾病的悠久历史。它们被认为是各种各样的药物化合物的起源。葛根中发现的化合物之一是葛根素,异黄酮苷通常用作治疗各种疾病的替代药物。从生物学的角度来看,葛根素可以描述为白色针状晶体,化学名称为7-羟基-3-(4-羟基苯基)-1-苯并吡喃-4-酮-8-D-吡喃葡萄糖苷。此外,葛根素微溶于水,不产生颜色或浅黄色溶液。多项实验和临床研究证实葛根素具有显著的治疗作用。这些作用跨越广泛的药理作用,包括神经保护,肝脏保护,心脏保护,免疫调节,抗癌特性,抗糖尿病特性,抗骨质疏松特性,还有更多.葛根素通过与各种细胞和分子途径相互作用来实现这些作用,如MAPK,AMPK,NF-κB,mTOR,β-连环蛋白,和PKB/Akt,以及不同的受体,酶,和增长因素。本文综述了葛根素作为神经保护剂治疗各种神经退行性疾病和神经系统疾病的分子机制。广泛的细胞,动物,临床研究为其在阿尔茨海默病等疾病中的有效性提供了有价值的见解,帕金森病,癫痫,脑中风,抑郁症,还有更多.
    Plants and their derived phytochemicals have a long history of treating a wide range of illnesses for several decades. They are believed to be the origin of a diverse array of medicinal compounds. One of the compounds found in kudzu root is puerarin, a isoflavone glycoside commonly used as an alternative medicine to treat various diseases. From a biological perspective, puerarin can be described as a white needle crystal with the chemical name of 7-hydroxy-3-(4-hydroxyphenyl)-1-benzopyran-4-one-8-D-glucopyranoside. Besides, puerarin is sparingly soluble in water and produces no color or light yellow solution. Multiple experimental and clinical studies have confirmed the significant therapeutic effects of puerarin. These effects span a wide range of pharmacological effects, including neuroprotection, hepatoprotection, cardioprotection, immunomodulation, anticancer properties, anti-diabetic properties, anti-osteoporosis properties, and more. Puerarin achieves these effects by interacting with various cellular and molecular pathways, such as MAPK, AMPK, NF-κB, mTOR, β-catenin, and PKB/Akt, as well as different receptors, enzymes, and growth factors. The current review highlights the molecular mechanism of puerarin as a neuroprotective agent in the treatment of various neurodegenerative and neurological diseases. Extensive cellular, animal, and clinical research has provided valuable insights into its effectiveness in conditions such as Alzheimer\'s disease, Parkinson\'s disease, epilepsy, cerebral stroke, depression, and more.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自噬起始复合物是通过高度有序和逐步组装过程产生的。两个关键的信号分子,mTORC1和AMPK,通过磷酸化/去磷酸化自噬相关蛋白来协调这种组装。激活Atg1,然后将Atg9囊泡和PI3K复合物I募集到PAS(吞噬体组装位点)是其形成中特别关键的步骤。Ypt1,酵母细胞中的一种小RabGTPase,通过多种调节途径在自噬起始复合物的形成中也起着至关重要的作用。在这次审查中,我们的主要重点是讨论信号分子如何启动自噬起始复合物的组装,并强调了Ypt1在这一过程中的重要作用。我们最后解决了需要今后澄清的问题。
    The autophagy initiation complex is brought about via a highly ordered and stepwise assembly process. Two crucial signaling molecules, mTORC1 and AMPK, orchestrate this assembly by phosphorylating/dephosphorylating autophagy-related proteins. Activation of Atg1 followed by recruitment of both Atg9 vesicles and the PI3K complex I to the PAS (phagophore assembly site) are particularly crucial steps in its formation. Ypt1, a small Rab GTPase in yeast cells, also plays an essential role in the formation of the autophagy initiation complex through multiple regulatory pathways. In this review, our primary focus is to discuss how signaling molecules initiate the assembly of the autophagy initiation complex, and highlight the significant roles of Ypt1 in this process. We end by addressing issues that need future clarification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: English Abstract
    Problems with breathing and lung function are caused by the development of various lung diseases associated with lifestyle, harmful environmental factors and genetic predisposition. Knowledge of the molecular mechanisms of the development of the pathological process will allow on time identification of the disease or the development of targeted therapy. The article provides an overview of modern methods that make it possible to most accurately reproduce the structural, functional and mechanical properties of the lung (organ-on-a-chip), to perform non-invasive molecular studies of biomarkers of bronchopulmonary pathology using saliva diagnostics, as well as using DNA and RNA aptamers, verify tumor markers in biological samples of human tissue. Analysis of alterations in the pattern of protein glycosylation using glycodiagnostic methods makes it possible to detect lung cancer in the early stages.
    Проблемы с дыханием и функцией легких обусловлены развитием различных заболеваний легких, связанных с образом жизни, вредными экологическими факторами и генетической предрасположенностью. Знание молекулярных механизмов развития патологического процесса позволит вовремя выявить болезнь или разработать таргетную терапию. В статье представлен обзор современных методов, позволяющих наиболее точно воспроизвести структурные, функциональные и механические свойства легкого (орган-на- чипе), выполнять неинвазивные молекулярно-морфологические исследования биомаркеров бронхолегочной патологии с помощью саливадиагностики, а также применяя ДНК- и РНК-аптамеры, верифицировать онкомаркеры в биологических образцах тканей человека. Анализ изменений в паттерне гликозилирования белков с помощью методов гликодиагностики позволяет выявить рак легкого на ранних стадиях.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号