Self-circulating

  • 文章类型: Journal Article
    微生物燃料电池(MFC)是一种有前途的生物电化学技术,可同时发电和废水净化。利用太阳能为MFC运营提供可持续电力具有巨大潜力。在这项研究中,通过电微生物和光合藻类的合作,成功建立了半人工光合自循环MFC生态系统。生态系统可以在没有碳源的情况下连续运行,并在辐照下产生150mV的电压。辐照使生态系统的最大功率密度加倍,与黑暗条件相比,达到8.07W/m2。循环伏安法(CV)和电化学阻抗谱(EIS)的结果表明,生态系统中有更高的扩散能力或更快的电子补充能力。此外,对生态系统去除铬(Cr(VI))的能力进行了全面的研究。在辐照下,与黑暗条件相比,生态系统的Cr(VI)去除率提高了2.25倍。最后,16SrRNA扩增子测序结果表明,生态系统中严格和兼性好氧电活性细菌的相对丰度增加,包括柠檬酸杆菌(21%),芽孢杆菌(15%)和肠球菌(6%)。生态系统提供了一个小说,自我维持的方法,以应对能源回收和环境污染的挑战。
    The microbial fuel cell (MFC) is a promising bio-electrochemical technology that enables simultaneous electricity generation and effluent purification. Harnessing solar energy to provide sustainable power for MFC operation holds great potential. In this study, a semiartificial photosynthetic self-circulating MFC ecosystem is successfully established through the collaboration of electrogenic microorganisms and photosynthetic algae. The ecosystem can operate continuously without carbon sources and produces a voltage of 150 mV under irradiation. The irradiation doubles the maximum power density of the ecosystem, reaching 8.07 W/m2 compared to dark conditions. The results of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) suggest a higher diffusion capacity or faster electron replenishment ability within the ecosystem. Furthermore, the capacity of ecosystem for removing chromium (Cr(VI)) has been investigated comprehensively. Under irradiation, the ecosystem demonstrates a 2.25-fold increase in Cr(VI) removal rate compared to dark conditions. Finally, the results of 16S rRNA amplicon sequencing indicates an increase in the relative abundance of strict and facultative aerobic electroactive bacteria in the ecosystem, including Citrobacter (21 %), Bacillus (15 %) and Enterococcus (6 %). The ecosystem offers a novel, self-sustaining approach to address the challenges of energy recovery and environmental pollution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    设计并制造了包含杂化聚(芴-alt-亚苯基)(PFP)/PSII富集膜(BBY)光阳极和胆红素氧化酶(BOD)生物阴极的水-氧-水光合生物电化学电池(PBEC)。在PBEC中,水被分解为氧气,质子,和电子通过PSII在光电阳极上的光依赖性反应,氧气在生物阴极被BOD催化转化为水,形成电子电路并产生电流。在光电阳极,PFP可以同时加速光合水氧化和BBY与电极之间的电子转移。有趣的是,引入PFP后PBEC产生的光电流密度达到1.05±0.01μA/cm2,是BBY电极的2.5倍,表明共轭聚合物可以增强PBEC的光电响应。
    A water-oxygen-water photosynthetic bioelectrochemical cell (PBEC) comprising hybrid poly(fluorene-alt-phenylene) (PFP)/PSII-enriched membranes (BBY) photoanode and bilirubin oxidase (BOD) biocathode has been designed and fabricated. In the PBEC, water is split into oxygen, protons, and electrons through light-dependent reaction of PSII at the photoanode, and oxygen is converted into water catalyzed by BOD at the biocathode, forming the electronic circuit and generating current. At the photoanode, PFP can simultaneously accelerate the photosynthetic water oxidation and the electron transfer between BBY and electrode. Interestingly, the photocurrent density produced by PBEC after the introduction of PFP reaches 1.05 ± 0.01 μA/cm2, which is 2.5 times more than that of the BBY electrode, indicating that conjugated polymer can enhance the photoelectric response of PBEC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号