Seizure detection

癫痫发作检测
  • 文章类型: Journal Article
    癫痫,这与神经元损伤和功能衰退有关,通常会给患者带来日常生活中的许多挑战。早期诊断在控制病情和减轻患者痛苦中起着至关重要的作用。基于脑电图(EEG)的方法由于其有效性和非侵入性而通常用于诊断癫痫。在这项研究中,提出了一种分类方法,该方法使用快速傅里叶变换(FFT)提取结合卷积神经网络(CNN)和长短期记忆(LSTM)模型。
    大多数方法使用传统框架对癫痫进行分类,我们提出了一种新的方法来解决这个问题,即从源数据中提取特征,然后将它们输入到网络中进行训练和识别。它将源数据预处理为训练和验证数据,然后使用CNN和LSTM对数据的样式进行分类。
    在分析公共测试数据集时,用于癫痫分类的全CNN嵌套LSTM模型中表现最好的特征是3种特征中的FFT特征.值得注意的是,所有进行的实验都有很高的准确率,准确度超过96%的值,93%的灵敏度,和96%的特异性。这些结果进一步以当前的方法为基准,在所有试验中展示一致和强大的性能。我们的方法始终如一地实现了超过97.00%的准确率,在单个实验中的值范围为97.95%至99.83%。特别值得注意的是,我们的方法在AB与(与)CDE比较,注册为99.06%。
    我们的方法具有区分癫痫和非癫痫个体的精确分类能力,无论参与者的眼睛是闭上还是睁开。此外,我们的技术在有效地对癫痫类型进行分类方面显示出显著的性能,区分癫痫发作和发作间状态与非癫痫状态。我们的自动分类方法的固有优点是其能够忽略在闭眼或睁眼状态期间获取的EEG数据。这种创新为现实世界的应用带来了希望,可能帮助医疗专业人员更有效地诊断癫痫。
    UNASSIGNED: Epilepsy, which is associated with neuronal damage and functional decline, typically presents patients with numerous challenges in their daily lives. An early diagnosis plays a crucial role in managing the condition and alleviating the patients\' suffering. Electroencephalogram (EEG)-based approaches are commonly employed for diagnosing epilepsy due to their effectiveness and non-invasiveness. In this study, a classification method is proposed that use fast Fourier Transform (FFT) extraction in conjunction with convolutional neural networks (CNN) and long short-term memory (LSTM) models.
    UNASSIGNED: Most methods use traditional frameworks to classify epilepsy, we propose a new approach to this problem by extracting features from the source data and then feeding them into a network for training and recognition. It preprocesses the source data into training and validation data and then uses CNN and LSTM to classify the style of the data.
    UNASSIGNED: Upon analyzing a public test dataset, the top-performing features in the fully CNN nested LSTM model for epilepsy classification are FFT features among three types of features. Notably, all conducted experiments yielded high accuracy rates, with values exceeding 96% for accuracy, 93% for sensitivity, and 96% for specificity. These results are further benchmarked against current methodologies, showcasing consistent and robust performance across all trials. Our approach consistently achieves an accuracy rate surpassing 97.00%, with values ranging from 97.95 to 99.83% in individual experiments. Particularly noteworthy is the superior accuracy of our method in the AB versus (vs.) CDE comparison, registering at 99.06%.
    UNASSIGNED: Our method exhibits precise classification abilities distinguishing between epileptic and non-epileptic individuals, irrespective of whether the participant\'s eyes are closed or open. Furthermore, our technique shows remarkable performance in effectively categorizing epilepsy type, distinguishing between epileptic ictal and interictal states versus non-epileptic conditions. An inherent advantage of our automated classification approach is its capability to disregard EEG data acquired during states of eye closure or eye-opening. Such innovation holds promise for real-world applications, potentially aiding medical professionals in diagnosing epilepsy more efficiently.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脑电图(EEG)的自动癫痫发作检测由于具有方便和经济的优点,在帮助癫痫的诊断和治疗中具有重要意义。现有的癫痫发作检测方法通常是针对患者的,培训和测试是在同一个病人身上进行的,限制了他们对其他患者的可扩展性。为了解决这个问题,我们提出了一种通过无监督域适应的跨主题癫痫发作检测方法。所提出的方法旨在通过浅层和深层特征对齐获得特定的信息。对于浅特征对齐,我们使用卷积神经网络(CNN)来提取与癫痫发作相关的特征。通过多核最大平均差异(MK-MMD)将不同患者之间的浅特征的分布间隙最小化。对于深层特征对齐,利用对抗性学习。特征提取器尝试学习试图混淆域分类器的特征表示,使提取的深层特征更易于推广到新患者。在基于时代的实验中,在CHB-MIT和Siena数据库上评估了我们方法的性能。此外,基于事件的实验也在CHB-MIT数据集上进行。结果验证了我们的方法在减少不同患者之间的领域差异方面的可行性。
    Automatic seizure detection from Electroencephalography (EEG) is of great importance in aiding the diagnosis and treatment of epilepsy due to the advantages of convenience and economy. Existing seizure detection methods are usually patient-specific, the training and testing are carried out on the same patient, limiting their scalability to other patients. To address this issue, we propose a cross-subject seizure detection method via unsupervised domain adaptation. The proposed method aims to obtain seizure specific information through shallow and deep feature alignments. For shallow feature alignment, we use convolutional neural network (CNN) to extract seizure-related features. The distribution gap of the shallow features between different patients is minimized by multi-kernel maximum mean discrepancies (MK-MMD). For deep feature alignment, adversarial learning is utilized. The feature extractor tries to learn feature representations that try to confuse the domain classifier, making the extracted deep features more generalizable to new patients. The performance of our method is evaluated on the CHB-MIT and Siena databases in epoch-based experiments. Additionally, event-based experiments are also conducted on the CHB-MIT dataset. The results validate the feasibility of our method in diminishing the domain disparities among different patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    癫痫是一种常见的神经系统疾病,影响全世界许多人。癫痫的主要挑战之一是准确及时地检测癫痫发作。最近,与深度神经网络相比,图正则化的广义学习系统(GBLS)以其平坦的结构和更少的耗时的训练过程实现了卓越的性能改进。然而,GBLS中的特征和增强节点的数量是预定的。这些节点设置也是随机选择的,并且在整个训练过程中保持不变。因此,随机性的特征更容易使非最佳节点生成,这不能对解决优化问题做出重大贡献。
    为了获得更多的优化节点并实现卓越的自动检测性能,我们提出了一种新的广义神经网络,称为自适应进化图正则化广义学习系统(SaE-GBLS)。自适应进化算法,它可以根据生成网络参数选择解决方案的经验,在策略池中构建突变策略,将其并入SaE-GBLS模型中,以优化节点参数。我们提出的SaE-GBLS模型基于三个公开可用的EEG数据集和一个私有临床EEG数据集来自动检测癫痫发作。
    实验结果表明,我们建议的策略具有与当前机器学习方法一样好的潜力。
    UNASSIGNED: Epilepsy is a common neurological condition that affects a large number of individuals worldwide. One of the primary challenges in epilepsy is the accurate and timely detection of seizure. Recently, the graph regularized broad learning system (GBLS) has achieved superior performance improvement with its flat structure and less time-consuming training process compared to deep neural networks. Nevertheless, the number of feature and enhancement nodes in GBLS is predetermined. These node settings are also randomly selected and remain unchanged throughout the training process. The characteristic of randomness is thus more easier to make non-optimal nodes generate, which cannot contribute significantly to solving the optimization problem.
    UNASSIGNED: To obtain more optimal nodes for optimization and achieve superior automatic detection performance, we propose a novel broad neural network named self-adaptive evolutionary graph regularized broad learning system (SaE-GBLS). Self-adaptive evolutionary algorithm, which can construct mutation strategies in the strategy pool based on the experience of producing solutions for selecting network parameters, is incorporated into SaE-GBLS model for optimizing the node parameters. The epilepsy seizure is automatic detected by our proposed SaE-GBLS model based on three publicly available EEG datasets and one private clinical EEG dataset.
    UNASSIGNED: The experimental results indicate that our suggested strategy has the potential to perform as well as current machine learning approaches.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癫痫是一种常见的神经系统疾病,通常表现为反复发作,这些癫痫发作会对一个人的生命和健康产生严重影响。因此,癫痫的早期发现和诊断至关重要。为了提高癫痫早期发现和诊断的效率,本文提出了一种新的癫痫发作检测方法,该模型基于离散小波变换(DWT)和多通道长短期记忆样尖峰神经P(LSTM-SNP)模型。首先,通过使用DWT变换将信号分解为5个级别,以获得不同频率下分量的特征,并提取小波系数中的一系列时频特征。然后,这些不同的特征用于训练多通道LSTM-SNP模型并进行癫痫发作检测.所提出的方法在CHB-MIT数据集上实现了很高的癫痫发作检测精度:98.25%的准确率,98.22%的特异性和97.59%的敏感性。这表明所提出的癫痫检测方法能够表现出竞争性的检测性能。
    Seizure is a common neurological disorder that usually manifests itself in recurring seizure, and these seizures can have a serious impact on a person\'s life and health. Therefore, early detection and diagnosis of seizure is crucial. In order to improve the efficiency of early detection and diagnosis of seizure, this paper proposes a new seizure detection method, which is based on discrete wavelet transform (DWT) and multi-channel long- and short-term memory-like spiking neural P (LSTM-SNP) model. First, the signal is decomposed into 5 levels by using DWT transform to obtain the features of the components at different frequencies, and a series of time-frequency features in wavelet coefficients are extracted. Then, these different features are used to train a multi-channel LSTM-SNP model and perform seizure detection. The proposed method achieves a high seizure detection accuracy on the CHB-MIT dataset: 98.25% accuracy, 98.22% specificity and 97.59% sensitivity. This indicates that the proposed epilepsy detection method can show competitive detection performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有智能方法的闭环神经调节在提供用于治疗神经和精神疾病的新型神经技术方面显示出巨大的潜力。脑机交互式神经调节策略的发展可能会导致精准和个性化电子医学的突破。集成人工智能计算并实时执行神经感知和刺激的神经调节研究工具可以加速闭环神经调节策略的发展以及将研究转化为临床应用。在这项研究中,我们开发了一种脑机互动神经调节研究工具(BMINT),具有神经生理信号感知能力,使用主流机器学习算法进行计算,并实时逐个脉冲地提供电刺激。BMINT研究工具实现了3毫秒以下的系统时延,和计算能力在可行的计算成本中,高效部署机器学习算法和加速过程。BMINT中嵌入的智能计算框架实现了利用主流AI生态资源开发的实时闭环神经调制。BMINT可以通过整合神经感知为加速智能神经调节的转化研究提供及时的贡献,边缘AI计算和AI生态系统的刺激。
    Closed-loop neuromodulation with intelligence methods has shown great potentials in providing novel neuro-technology for treating neurological and psychiatric diseases. Development of brain-machine interactive neuromodulation strategies could lead to breakthroughs in precision and personalized electronic medicine. The neuromodulation research tool integrating artificial intelligent computing and performing neural sensing and stimulation in real-time could accelerate the development of closed-loop neuromodulation strategies and translational research into clinical application. In this study, we developed a brain-machine interactive neuromodulation research tool (BMINT), which has capabilities of neurophysiological signals sensing, computing with mainstream machine learning algorithms and delivering electrical stimulation pulse by pulse in real-time. The BMINT research tool achieved system time delay under 3 ms, and computing capabilities in feasible computation cost, efficient deployment of machine learning algorithms and acceleration process. Intelligent computing framework embedded in the BMINT enable real-time closed-loop neuromodulation developed with mainstream AI ecosystem resources. The BMINT could provide timely contribution to accelerate the translational research of intelligent neuromodulation by integrating neural sensing, edge AI computing and stimulation with AI ecosystems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:评估为消费者可穿戴式(AppleWatch)设备上的强直阵挛性癫痫发作(TCS)监测而开发的自定义应用程序的性能。
    方法:招募有惊厥性癫痫发作史的参与者进行癫痫监测单位(EMU)或门诊(AMB)监测;没有癫痫的参与者(正常对照[NC])也纳入AMB组。EMU和AMB参与者都戴着带有研究应用程序的AppleWatch,该应用程序连续记录了加速度计和光电体积描记术(PPG)信号,并在测试期间运行了固定和冷冻的强直阵挛性癫痫发作检测算法。该算法先前已经使用单独的训练数据集开发和验证。所有EMU惊厥事件均通过视频脑电图(video-EEG)进行验证;AMB事件通过护理人员报告和随访进行验证。通过灵敏度对设备性能进行了表征,并与以前的监测设备进行了比较,误报率(FAR;每24小时误报),精度,和检测延迟(延迟)。
    结果:EMU组有85名参与者(4,279小时,来自15名参与者的19名TCS)在四个EMU中注册;AMB组有21名参与者(13名门诊患者,8NC,6,735小时,来自3名参与者的10个TCS)。除一名AMB参与者外,所有参与者都完成了研究。EMU组的设备性能包括灵敏度为100%[95%置信区间(CI)79-100%];每24小时的FAR为0.05[0.02,0.08];精度为68%[48%,83%];延迟为32.07s[标准偏差(std)10.22s]。AMB组的灵敏度为100%[66-100%];每24小时的FAR为0.13[0.08,0.24];精度为22%[11%,37%];延迟为37.38s[13.24s]。值得注意的是,1名AMB参与者对31例假警报中的8例负责.不包括该参与者的AMBFAR为每24小时0.10[0.07,0.14]。
    结论:这项研究证明了在癫痫患者的日常使用中,在流行的消费者可穿戴设备(AppleWatch)上进行TCS监测的实用性。与之前在EMU和AMB环境中报告的相比,该监控应用程序具有高灵敏度和低得多的FAR。
    OBJECTIVE: Evaluate the performance of a custom application developed for tonic-clonic seizure (TCS) monitoring on a consumer-wearable (Apple Watch) device.
    METHODS: Participants with a history of convulsive epileptic seizures were recruited for either Epilepsy Monitoring Unit (EMU) or ambulatory (AMB) monitoring; participants without epilepsy (normal controls [NC]) were also enrolled in the AMB group. Both EMU and AMB participants wore an Apple Watch with a research app that continuously recorded accelerometer and photoplethysmography (PPG) signals, and ran a fixed-and-frozen tonic-clonic seizure detection algorithm during the testing period. This algorithm had been previously developed and validated using a separate training dataset. All EMU convulsive events were validated by video-electroencephalography (video-EEG); AMB events were validated by caregiver reporting and follow-ups. Device performance was characterized and compared to prior monitoring devices through sensitivity, false alarm rate (FAR; false-alarms per 24 h), precision, and detection delay (latency).
    RESULTS: The EMU group had 85 participants (4,279 h, 19 TCS from 15 participants) enrolled across four EMUs; the AMB group had 21 participants (13 outpatient, 8 NC, 6,735 h, 10 TCS from 3 participants). All but one AMB participant completed the study. Device performance in the EMU group included a sensitivity of 100 % [95 % confidence interval (CI) 79-100 %]; an FAR of 0.05 [0.02, 0.08] per 24 h; a precision of 68 % [48 %, 83 %]; and a latency of 32.07 s [standard deviation (std) 10.22 s]. The AMB group had a sensitivity of 100 % [66-100 %]; an FAR of 0.13 [0.08, 0.24] per 24 h; a precision of 22 % [11 %, 37 %]; and a latency of 37.38 s [13.24 s]. Notably, a single AMB participant was responsible for 8 of 31 false alarms. The AMB FAR excluding this participant was 0.10 [0.07, 0.14] per 24 h.
    CONCLUSIONS: This study demonstrates the practicability of TCS monitoring on a popular consumer wearable (Apple Watch) in daily use for people with epilepsy. The monitoring app had a high sensitivity and a substantially lower FAR than previously reported in both EMU and AMB environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    癫痫的特征是由大脑中异常的电活动引起的反复发作。这些癫痫发作表现为各种症状,包括肌肉收缩和意识丧失。检测癫痫发作的挑战性任务涉及将脑电图(EEG)信号分类为发作(发作)和发作间(非发作)类别。这种分类是至关重要的,因为它区分了癫痫患者的癫痫发作状态和无癫痫发作期。我们的研究提出了一种通过利用图神经网络使用EEG信号检测癫痫发作和神经系统疾病的创新方法。该方法有效地解决了EEG数据处理的挑战。我们通过提取诸如基于频率,基于统计,和Daubechies小波变换的特点。该图形表示允许通过对所提取的特征的视觉检查来在癫痫发作和非癫痫发作信号之间进行潜在区分。为了提高癫痫发作检测的准确性,我们采用两种模型:一种将图卷积网络(GCN)与长短期记忆(LSTM)相结合,另一种将GCN与平衡随机森林(BRF)相结合。我们的实验结果表明,这两种模型都显著提高了癫痫发作检测的准确性,超越以前的方法。尽管通过减少渠道来简化我们的方法,我们的研究揭示了一致的表现,显示神经退行性疾病检测的显著进步。我们的模型在脑电图信号中准确识别癫痫发作,强调了图神经网络的潜力。流线型方法不仅以更少的渠道保持有效性,而且还提供了一种视觉上可区分的方法来辨别癫痫发作类别。这项研究为脑电图分析开辟了道路,强调图形表示在促进我们对神经退行性疾病的理解方面的影响。
    Epilepsy is characterized by recurring seizures that result from abnormal electrical activity in the brain. These seizures manifest as various symptoms including muscle contractions and loss of consciousness. The challenging task of detecting epileptic seizures involves classifying electroencephalography (EEG) signals into ictal (seizure) and interictal (non-seizure) classes. This classification is crucial because it distinguishes between the states of seizure and seizure-free periods in patients with epilepsy. Our study presents an innovative approach for detecting seizures and neurological diseases using EEG signals by leveraging graph neural networks. This method effectively addresses EEG data processing challenges. We construct a graph representation of EEG signals by extracting features such as frequency-based, statistical-based, and Daubechies wavelet transform features. This graph representation allows for potential differentiation between seizure and non-seizure signals through visual inspection of the extracted features. To enhance seizure detection accuracy, we employ two models: one combining a graph convolutional network (GCN) with long short-term memory (LSTM) and the other combining a GCN with balanced random forest (BRF). Our experimental results reveal that both models significantly improve seizure detection accuracy, surpassing previous methods. Despite simplifying our approach by reducing channels, our research reveals a consistent performance, showing a significant advancement in neurodegenerative disease detection. Our models accurately identify seizures in EEG signals, underscoring the potential of graph neural networks. The streamlined method not only maintains effectiveness with fewer channels but also offers a visually distinguishable approach for discerning seizure classes. This research opens avenues for EEG analysis, emphasizing the impact of graph representations in advancing our understanding of neurodegenerative diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然许多癫痫发作检测方法已经证明了很高的准确性,他们的训练需要大量的标记数据。为了解决这个问题,我们提出了一种新的无监督癫痫异常检测方法,称为SAoDDPM,它使用去噪扩散概率模型(DDPM)。我们设计了一种新颖的管道,该管道使用马尔可夫链上的可变下界来识别异常数据中不太可能出现的潜在值。首先在正常数据上训练模型,然后将异常数据输入到训练的模型中。模型对异常数据进行重新采样并将其转换为正常数据。最后,癫痫发作的存在可以通过比较前后的数据来确定。此外,输入的2D光谱图被编码为矢量量化表示,这使得强大和高效的DDPM,同时保持其质量。对公开数据集的实验比较,CHB-MIT和TUH,表明我们的方法提供了更好的结果,大大减少了推理时间,并且适合在临床环境中部署。据我们所知,这是第一个基于DDPM的癫痫异常检测方法。这种新颖的方法大大有助于癫痫检测算法的进展,从而增强其在临床环境中的实用性。
    While many seizure detection methods have demonstrated great accuracy, their training necessitates a substantial volume of labeled data. To address this issue, we propose a novel method for unsupervised seizure anomaly detection called SAnoDDPM, which uses denoising diffusion probabilistic models (DDPM). We designed a novel pipeline that uses a variable lower bound on Markov chains to identify potential values that are unlikely to occur in anomalous data. The model is first trained on normal data, then anomalous data is input to the trained model. The model resamples the anomalous data and converts it to normal data. Finally, the presence of seizures can be determined by comparing the before and after data. Moreover, the input 2D spectrograms are encoded into vector-quantized representations, which enables powerful and efficient DDPM while maintaining its quality. Experimental comparisons on the publicly available datasets, CHB-MIT and TUH, show that our method delivers better results, significantly reduces inference time, and is suitable for deployment in a clinical environments. As far as we are aware, this is the first DDPM-based method for seizure anomaly detection. This novel approach significantly contributes to the progression of seizure detection algorithms, thereby augmenting their practicality in clinical settings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,可穿戴设备因其通过改善癫痫发作监测和预测来增强患者护理的潜力而在癫痫研究中引起了极大的关注。这篇叙述性综述提供了当前临床最新技术的详细概述,同时解决了评估自主神经系统(ANS)功能的设备如何反映癫痫发作和中枢神经系统(CNS)状态变化。这包括CNS和ANS之间的相互作用的描述,包括影响其动力学的生理和癫痫相关变化。我们首先讨论测量自主生物信号的技术方面以及在临床实践中使用ANS传感器的注意事项。然后,我们回顾了最近的癫痫发作检测和癫痫发作预测研究,使用测量ANS生物标志物的设备,强调他们在癫痫发作检测和预测方面的性能和能力。最后,我们应对该领域的挑战,并为未来的发展提供展望。
    Wearable devices have attracted significant attention in epilepsy research in recent years for their potential to enhance patient care through improved seizure monitoring and forecasting. This narrative review presents a detailed overview of the current clinical state of the art while addressing how devices that assess autonomic nervous system (ANS) function reflect seizures and central nervous system (CNS) state changes. This includes a description of the interactions between the CNS and the ANS, including physiological and epilepsy-related changes affecting their dynamics. We first discuss technical aspects of measuring autonomic biosignals and considerations for using ANS sensors in clinical practice. We then review recent seizure detection and seizure forecasting studies, highlighting their performance and capability for seizure detection and forecasting using devices measuring ANS biomarkers. Finally, we address the field\'s challenges and provide an outlook for future developments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    长期脑电图(EEG)监测建议用于抗癫痫药物和治疗失败的难治性癫痫患者。然而,它的实际应用是有限的,主要是由于使用多个脑电通道。我们提出了一种基于患者特定深度学习的单通道癫痫发作检测方法,使用波士顿-麻省理工学院(CHB-MIT)儿童医院的长期头皮脑电图记录数据集,结合神经科医生确认个体患者的空间癫痫发作特征。
    我们建造了18-,4-,和13例患者的单通道癫痫发作探测器。神经学家在四个通道中选择了一个特定的通道,每个病人两个靠近耳后,两个在额头,在检查患者独特的癫痫发作位置并重新注释后。
    我们的多通道和单通道探测器的平均灵敏度为97.05-100%,误报率0.22-0.40/h,在连续脑电图记录中识别癫痫发作的潜伏期为2.1-3.4s。结果表明,我们的单通道方法的癫痫发作检测性能与我们的多通道方法相当。
    我们建议,我们的单通道方法与临床指定最突出的癫痫发作位置相结合,在难治性癫痫患者的长期脑电图记录中具有很高的可穿戴性癫痫发作检测潜力。
    UNASSIGNED: Long-term electroencephalography (EEG) monitoring is advised to patients with refractory epilepsy who have a failure of anti-seizure medication and therapy. However, its real-life application is limited mainly due to the use of multiple EEG channels. We proposed a patient-specific deep learning-based single-channel seizure detection approach using the long-term scalp EEG recordings of the Children\'s Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) dataset, in conjunction with neurologists\' confirmation of spatial seizure characteristics of individual patients.
    UNASSIGNED: We constructed 18-, 4-, and single-channel seizure detectors for 13 patients. Neurologists selected a specific channel among four channels, two close to the behind-the-ear and two at the forehead for each patient, after reviewing the patient\'s distinctive seizure locations with seizure re-annotation.
    UNASSIGNED: Our multi- and single-channel detectors achieved an average sensitivity of 97.05-100%, false alarm rate of 0.22-0.40/h, and latency of 2.1-3.4 s for identification of seizures in continuous EEG recordings. The results demonstrated that seizure detection performance of our single-channel approach was comparable to that of our multi-channel ones.
    UNASSIGNED: We suggest that our single-channel approach in conjunction with clinical designation of the most prominent seizure locations has a high potential for wearable seizure detection on long-term EEG recordings for patients with refractory epilepsy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号