SaCas9

SaCas9
  • 文章类型: Journal Article
    探测两个基因之间的上位可能是识别细胞途径中分子参与者的关键的第一步。CRISPR-Cas介导的遗传筛选的出现使得能够在基因组规模上研究这些遗传相互作用。然而,当使用CRISPRCas9组合两个基因的耗竭时,由于克隆步骤中对Cas加载和重组的竞争而导致的靶向效率降低已成为关键挑战.此外,鉴于传统的CRISPR屏幕通常涉及初始和最终时间点之间的比较,很难解析扰动的遗传相互作用影响生存能力的时间动力学,用必需基因评估上位性也变得具有挑战性。这里,我们讨论了一种基于高通量流的方法来研究遗传相互作用。通过利用两种不同的Cas9直系同源物并在多个时间点监测生存能力,这种方法有助于有效缓解Cas9竞争的局限性,并能够以高时间分辨率评估与必需和非必需基因的遗传相互作用.
    Probing epistasis between two genes can be a critical first step in identifying the molecular players in a cellular pathway. The advent of CRISPR-Cas mediated genetic screen has enabled studying of these genetic interactions at a genomic scale. However, when combining depletion of two genes using CRISPR Cas9, reduced targeting efficiencies due to competition for Cas loading and recombination in the cloning step have emerged as key challenges. Moreover, given conventional CRISPR screens typically involve comparison between the initial and final time point, it is difficult to parse the time kinetics with which a perturbed genetic interaction impacts viability, and it also becomes challenging to assess epistasis with essential genes. Here, we discuss a high-throughput flow-based approach to study genetic interactions. By utilizing two different Cas9 orthologs and monitoring viability at multiple time points, this approach helps to effectively mitigate the limitations of Cas9 competition and enables assessment of genetic interactions with both essential and non-essential genes at a high temporal resolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于CRISPR-Cas9的治疗性基因组编辑方法有望治愈多种人类疾病。最近的研究结果表明,人类对来自化脓性链球菌(SpCas9)和金黄色葡萄球菌(SaCas9)的常用Cas直向同源物已经存在免疫力,这威胁到这个强大的工具在临床使用中的成功。因此,需要进行全面调查和潜在风险评估,以充分利用系统的潜力。这里,我们调查了对照恒河猴(Macacamulatta)以及移植了慢病毒转导或CRISPR-SpCas9核糖核蛋白(RNP)编辑细胞的猴子对SpCas9和SaCas9的免疫力的存在。我们在所有移植和非移植对照动物的外周血中观察到显著水平的Cas9抗体。离体转导或SpCas9介导的BCL11A增强子编辑的细胞的移植不会改变猕猴中Cas9抗体的水平。在用SpCas9或SaCas9刺激外周血细胞之后,既没有检测到Cas9特异性T细胞也没有检测到细胞因子诱导。在BCL11A增强子编辑的恒河猴中,稳健而持久的编辑频率和高水平的胎儿血红蛋白表达,没有免疫反应的证据(>3年),为使用离体CRISPR-SpCas9(RNP)编辑的细胞提供了乐观的前景。
    CRISPR-Cas9-based therapeutic genome editing approaches hold promise to cure a variety of human diseases. Recent findings demonstrate pre-existing immunity for the commonly used Cas orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans, which threatens the success of this powerful tool in clinical use. Thus, a comprehensive investigation and potential risk assessment are required to exploit the full potential of the system. Here, we investigated existence of immunity to SpCas9 and SaCas9 in control rhesus macaques (Macaca mulatta) alongside monkeys transplanted with either lentiviral transduced or CRISPR-SpCas9 ribonucleoprotein (RNP)-edited cells. We observed significant levels of Cas9 antibodies in the peripheral blood of all transplanted and non-transplanted control animals. Transplantation of ex vivo transduced or SpCas9-mediated BCL11A enhancer-edited cells did not alter the levels of Cas9 antibodies in rhesus monkeys. Following stimulation of peripheral blood cells with SpCas9 or SaCas9, neither Cas9-specific T cells nor cytokine induction were detected. Robust and durable editing frequencies and expression of high levels of fetal hemoglobin in BCL11A enhancer-edited rhesus monkeys with no evidence of an immune response (>3 years) provide an optimistic outlook for the use of ex vivo CRISPR-SpCas9 (RNP)-edited cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR/Cas系统是用于治疗性基因组编辑的一些最有前途的工具。这些系统的使用取决于指导和同源定向修复(HDR)模板的最佳设计。虽然这种设计可以在计算机上实现,验证和进一步优化通常在报告系统的帮助下进行。这里,我们描述了一个新颖的记者系统,叫做Betle,允许快速,敏感,通过在不同的开放阅读框中编码多个报告蛋白,进行基因组编辑和模板特异性HDR的细胞特异性检测。框外非同源末端连接(NHEJ)导致可分泌的NanoLuc荧光素酶的表达,能够对编辑进行高度敏感和低成本的分析,或荧光mTagBFP2,允许基因组编辑细胞的计数和组织特异性定位。BETLE包括一个验证CRISPR/Cas系统感兴趣序列的位点,使其具有广泛的适应性。我们使用具有39个碱基对缺失的有缺陷的moxGFP评估了BETLE,并显示了spCas9,saCas9和asCas12a的编辑以及序列特异性HDR和具有单个和多个报告整合体的细胞系中moxGFP的修复。一起来看,这些数据表明,BETLE可以在体外快速检测和优化CRISPR/Cas基因组编辑和HDR,并且是未来体内应用的最新工具.
    CRISPR/Cas systems are some of the most promising tools for therapeutic genome editing. The use of these systems is contingent on the optimal designs of guides and homology-directed repair (HDR) templates. While this design can be achieved in silico, validation and further optimization are usually performed with the help of reporter systems. Here, we describe a novel reporter system, termed BETLE, that allows for the fast, sensitive, and cell-specific detection of genome editing and template-specific HDR by encoding multiple reporter proteins in different open-reading frames. Out-of-frame non-homologous end joining (NHEJ) leads to the expression of either secretable NanoLuc luciferase, enabling a highly sensitive and low-cost analysis of editing, or fluorescent mTagBFP2, allowing for the enumeration and tissue-specific localization of genome-edited cells. BETLE includes a site to validate CRISPR/Cas systems for a sequence-of-interest, making it broadly adaptable. We evaluated BETLE using a defective moxGFP with a 39-base-pair deletion and showed spCas9, saCas9, and asCas12a editing as well as sequence-specific HDR and the repair of moxGFP in cell lines with single and multiple reporter integrants. Taken together, these data show that BETLE allows for the rapid detection and optimization of CRISPR/Cas genome editing and HDR in vitro and represents a state-of the art tool for future applications in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR-Cas9的可编程DNA结合和切割彻底改变了生命科学。然而,在与靶标具有一定同源性的DNA序列中观察到的脱靶切割仍然是Cas9在生物学和医学中更广泛使用的主要限制.出于这个原因,完全了解DNA结合的动力学,Cas9的询问和切割对于提高基因组编辑的效率至关重要。这里,我们使用高速原子力显微镜(HS-AFM)研究金黄色葡萄球菌Cas9(SaCas9)及其DNA结合和裂解的动力学。与单向导RNA(sgRNA)结合后,SaCas9形成了一个封闭的双叶结构,该结构暂时灵活地采用了开放式配置。SaCas9介导的DNA切割的特征是释放切割的DNA和立即解离,确认SaCas9作为多周转核酸内切酶操作。根据目前的知识,寻找靶DNA的过程主要受三维扩散的支配。独立的HS-AFM实验显示SaCas9-sgRNA与其靶DNA之间潜在的长程有吸引力的相互作用。相互作用先于稳定的三元复合物的形成,并且仅在原型间隔区相邻基序(PAM)附近观察到,达到几纳米的距离。通过顺序地形图像对该过程的直接可视化表明,SaCas9-sgRNA首先与靶序列结合,而随后的PAM结合伴随着局部DNA弯曲和稳定复合物的形成。总的来说,我们的HS-AFM数据揭示了SaCas9在寻找DNA靶标过程中的潜在和意外行为.
    Programmable DNA binding and cleavage by CRISPR-Cas9 has revolutionized the life sciences. However, the off-target cleavage observed in DNA sequences with some homology to the target still represents a major limitation for a more widespread use of Cas9 in biology and medicine. For this reason, complete understanding of the dynamics of DNA binding, interrogation and cleavage by Cas9 is crucial to improve the efficiency of genome editing. Here, we use high-speed atomic force microscopy (HS-AFM) to investigate Staphylococcus aureus Cas9 (SaCas9) and its dynamics of DNA binding and cleavage. Upon binding to single-guide RNA (sgRNA), SaCas9 forms a close bilobed structure that transiently and flexibly adopts also an open configuration. The SaCas9-mediated DNA cleavage is characterized by release of cleaved DNA and immediate dissociation, confirming that SaCas9 operates as a multiple turnover endonuclease. According to present knowledge, the process of searching for target DNA is mainly governed by three-dimensional diffusion. Independent HS-AFM experiments show a potential long-range attractive interaction between SaCas9-sgRNA and its target DNA. The interaction precedes the formation of the stable ternary complex and is observed exclusively in the vicinity of the protospacer-adjacent motif (PAM), up to distances of several nanometers. The direct visualization of the process by sequential topographic images suggests that SaCas9-sgRNA binds to the target sequence first, while the following binding of the PAM is accompanied by local DNA bending and formation of the stable complex. Collectively, our HS-AFM data reveal a potential and unexpected behavior of SaCas9 during the search for DNA targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金黄色葡萄球菌Cas9(SaCas9)是一种广泛使用的基因组编辑工具。了解其DNA裂解的分子机制可以有效地指导该系统的工程优化。这里,我们确定了SaCas9-sgRNA-DNA三元复合物的第一个低温电子显微镜结构。该结构揭示了HNH核酸酶结构域与靶DNA链的切割位点紧密结合,并与WED和REC域有密切联系。此外,它捕获了sgRNA的完整结构,包括以前未解决的茎环2。基于这种结构,我们建立了处于分裂状态的三元络合物的全长模型。该模型能够鉴定HNH结构域与WED和REC结构域之间相互作用的残基。此外,我们发现sgRNA的茎环2与PI和RuvC结构域紧密结合,并且还可能调节RuvC结构域的位置移位。进一步的诱变和分子动力学模拟支持HNH结构域与WED和REC结构域的相互作用在DNA切割中起重要作用的想法。因此,这项研究为SaCas9的DNA切割提供了新的机制见解,也有助于指导SaCas9介导的基因编辑系统的未来工程。
    Staphylococcus aureus Cas9 (SaCas9) is a widely used genome editing tool. Understanding its molecular mechanisms of DNA cleavage could effectively guide the engineering optimization of this system. Here, we determined the first cryo-electron microscopy structure of the SaCas9-sgRNA-DNA ternary complex. This structure reveals that the HNH nuclease domain is tightly bound to the cleavage site of the target DNA strand, and is in close contact with the WED and REC domains. Moreover, it captures the complete structure of the sgRNA, including the previously unresolved stem-loop 2. Based on this structure, we build a full-length model for the ternary complex in cleavage state. This model enables identification of the residues for the interactions between the HNH domain and the WED and REC domains. Moreover, we found that the stem-loop 2 of the sgRNA tightly binds to the PI and RuvC domains and may also regulate the position shift of the RuvC domain. Further mutagenesis and molecular dynamics simulations supported the idea that the interactions of the HNH domain with the WED and REC domains play an important role in the DNA cleavage. Thus, this study provides new mechanistic insights into the DNA cleavage of SaCas9 and is also useful for guiding the future engineering of SaCas9-mediated gene editing systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    等位基因特异性DNA甲基化是位于差异甲基化区域(DMRs)的最重要的印记标记,和异常基因组印迹DNA甲基化与一些人类疾病有关,包括Prader-Willi综合征和癌症.因此,精确编辑等位基因特异性甲基化基因的有效策略的开发对于阐明印迹元件的功能和纠正人类疾病中的印迹障碍至关重要。为了发现基于CRISPR/Cas系统的可行的等位基因特异性基因组编辑工具,这是一种在各种生物中有效的基因靶向技术,我们检测了金黄色葡萄球菌Cas9(SaCas9)和化脓性链球菌Cas9(SpCas9)对DNA甲基化干扰的靶向效率.我们发现,使用dCas9-Tet1催化结构域(CD)的靶向DNA去甲基化增强了SaCas9而不是SpCas9的靶向效率,但使用Dnmt3l-Dnmt3a-dCas9被靶向DNA甲基化抑制。体外裂解测定进一步证明,在合成的含CpG的环境中,SaCas9核酸酶活性被5-甲基胞嘧啶(5mC)抑制。用ChIP-Q-PCR的进一步分析表明,SaCas9的非甲基化序列靶向依赖于SaCas9对非甲基化序列的结合偏好。利用SaCas9的这一特点,我们成功获得了两个印迹基因的非甲基化等位基因偏向性靶向胚胎/小鼠,H19和Snrpn,效率相对较高,分别为28.6%和47.4%,分别。这些结果表明SaCas9的靶向效率由于DNA甲基化而大大降低。通过使用SaCas9,我们通过优先靶向非甲基化基因座,成功地实现了印迹基因的等位基因特异性基因组编辑。
    Allele-specific DNA methylation is the most important imprinting marker localized to differentially methylated regions (DMRs), and aberrant genomic imprinted DNA methylation is associated with some human diseases, including Prader-Willi syndrome and cancer. Thus, the development of an effective strategy for the precise editing of allele-specific methylated genes is essential for the functional clarification of imprinting elements and the correction of imprinting disorders in human diseases. To discover a feasible allele-specific genome editing tool based on the CRISPR/Cas system, which is an efficient gene-targeting technique in various organisms, we examined the targeting efficiency of Staphylococcus aureus Cas9 (SaCas9) and Streptococcus pyogenes Cas9 (SpCas9) in response to DNA methylation interference. We found that the targeting efficiency of SaCas9, but not SpCas9, was enhanced by targeted DNA demethylation using the dCas9-Tet1 catalytic domain (CD) but suppressed by targeted DNA methylation using Dnmt3l-Dnmt3a-dCas9. An in vitro cleavage assay further demonstrated that SaCas9 nuclease activity was inhibited by 5-methylcytosine (5mC) in a synthesized CpG-containing context. Further analysis with ChIP-Q-PCR demonstrated that the non-methylated sequence targeting of SaCas9 depends on the binding preference of SaCas9 to non-methylated sequences. Taking advantage of this feature of SaCas9, we have successfully obtained non-methylated allele-biased targeted embryos/mice for two imprinting genes, H19 and Snrpn, with relatively high efficiencies of 28.6% and 47.4%, respectively. These results indicate that the targeting efficiency of SaCas9 was strongly reduced by DNA methylation. By using SaCas9, we successfully achieved allele-specific genome editing of imprinting genes by preferentially targeting non-methylated loci.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    视网膜色素变性(RP)是一种遗传性视网膜退行性疾病,最终涉及黄斑,它存在于灵长类动物中,但不存在于啮齿动物中。因此,建立非人灵长类动物(NHP)RP模型对于研究其发病机制和评估未来潜在的治疗方案至关重要.在这里,我们应用腺相关病毒(AAV)递送的CRISPR/SaCas9技术敲除成年恒河猴(Macacamulatta)视网膜中的RHO基因,以研究RHO基因的非种系突变是否足以概括RP的假设。通过一系列的研究,我们能够证明成功的RHO基因体细胞编辑和降低的RHO蛋白表达。更重要的是,突变型猕猴视网膜显示临床RP表型,包括光感受器变性,视网膜变薄,异常的杆亚细胞结构,减少光响应。因此,我们建议RHO基因的体细胞编辑能够表型RP,并且减少了产生NHP突变体的时间跨度,加速了RP的研究,并扩展了NHP模型在人类疾病研究中的实用性。
    Retinitis pigmentosa (RP) is a form of inherited retinal degenerative diseases that ultimately involves the macula, which is present in primates but not in the rodents. Therefore, creating nonhuman primate (NHP) models of RP is of critical importance to study its mechanism of pathogenesis and to evaluate potential therapeutic options in the future. Here we applied adeno-associated virus (AAV)-delivered CRISPR/SaCas9 technology to knockout the RHO gene in the retinae of the adult rhesus macaque (Macaca mulatta) to investigate the hypothesis whether non-germline mutation of the RHO gene is sufficient to recapitulate RP. Through a series of studies, we were able to demonstrate successful somatic editing of the RHO gene and reduced RHO protein expression. More importantly, the mutant macaque retinae displayed clinical RP phenotypes, including photoreceptor degeneration, retinal thinning, abnormal rod subcellular structures, and reduced photoresponse. Therefore, we suggest somatic editing of the RHO gene is able to phenocopy RP, and the reduced time span in generating NHP mutant accelerates RP research and expands the utility of NHP model for human disease study.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    一系列成簇的规则间隔短回文重复(CRISPR)-CRISPR相关蛋白9(Cas9)系统已被工程改造用于基因组编辑。最广泛使用的Cas9是来自化脓性链球菌的SpCas9和来自金黄色葡萄球菌的SaCas9。然而,目前仍缺乏对其详细基因编辑结果的比较.通过表征人类诱导多能干细胞(iPSCs)和K562细胞中11个位点的编辑结果,我们发现SaCas9可以比SpCas9更有效地编辑基因组。我们还比较了单向导RNA(sgRNA,对于SpCas9为18-21nt,对于SaCas9为19-23nt),并发现SpCas9和SaCas9的最佳间隔长度分别为20nt和21nt。然而,对于SpCas9和SaCas9,特定引导RNA的最佳间隔区大小分别为18-21nt或21-22nt。此外,SpCas9在前间隔区相邻基序(PAM)上游的第四个核苷酸处非同源末端连接(NHEJ)+1插入方面比SaCas9表现出更大的偏差,交错切口的特征。因此,使用SaCas9进行编辑导致NHEJ介导的双链寡脱氧核苷酸(dsODN)插入或腺相关病毒血清型6(AAV6)供体介导的同源定向修复(HDR)的敲入效率更高。最后,GUIDE-seq分析显示,与SpCas9相比,SaCas9表现出显著降低的脱靶效应。我们的工作表明SaCas9比SpCas9在基于转基因整合的治疗性基因编辑中的优异性能,以及鉴定最佳间隔区长度以实现所需编辑结果的必要性。
    A series of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) systems have been engineered for genome editing. The most widely used Cas9 is SpCas9 from Streptococcus pyogenes and SaCas9 from Staphylococcus aureus. However, a comparison of their detailed gene editing outcomes is still lacking. By characterizing the editing outcomes of 11 sites in human induced pluripotent stem cells (iPSCs) and K562 cells, we found that SaCas9 could edit the genome with greater efficiencies than SpCas9. We also compared the effects of spacer lengths of single-guide RNAs (sgRNAs; 18-21 nt for SpCas9 and 19-23 nt for SaCas9) and found that the optimal spacer lengths were 20 nt and 21 nt for SpCas9 and SaCas9, respectively. However, the optimal spacer length for a particular sgRNA was 18-21 nt for SpCas9 and 21-22 nt for SaCas9. Furthermore, SpCas9 exhibited a more substantial bias than SaCas9 for nonhomologous end-joining (NHEJ) +1 insertion at the fourth nucleotide upstream of the protospacer adjacent motif (PAM), indicating a characteristic of a staggered cut. Accordingly, editing with SaCas9 led to higher efficiencies of NHEJ-mediated double-stranded oligodeoxynucleotide (dsODN) insertion or homology-directed repair (HDR)-mediated adeno-associated virus serotype 6 (AAV6) donor knock-in. Finally, GUIDE-seq analysis revealed that SaCas9 exhibited significantly reduced off-target effects compared with SpCas9. Our work indicates the superior performance of SaCas9 to SpCas9 in transgene integration-based therapeutic gene editing and the necessity to identify the optimal spacer length to achieve desired editing results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:真正的二倍体青蛙,非洲爪狼(X.热带动物)是一种出色的遗传模型生物。迄今为止,在该物种中建立的CRISPR/Cas介导的基因组编辑方法主要基于SpCas9,该方法需要严格的NGG原型间隔区相邻基序(PAM)进行靶标识别,这限制了它的基因组编辑范围。因此,规避这种限制是非常可取的。
    结果:通过将Cas/gRNAs单细胞阶段注射到X.Tropicalis胚胎中,我们使用T7EI分析评估了8种不同Cas变体的诱变效率,SangerDNA测序,或深度测序。我们的数据表明SaCas9和KKHSaCas9在青蛙中非常有效,可用于G0胚胎的直接表型鉴定。相比之下,VQRCas9、xCas93.7、SpGCas9和SpRYCas9在热带X胚胎中是无效的,并且对于iSpyMacCas9没有检测到活性。我们还发现,具有配对crRNA的LbCas12a/crRNARNP复合物在热带X胚胎中有效地诱导小片段缺失。
    结论:SaCas9和KKHSaCas9是热带X胚胎中强大的基因组编辑工具。LbCas12a/crRNARNP复合物可用于诱导青蛙胚胎中的DNA片段缺失。这些工具扩展了热带X的CRISPR/Cas基因组编辑范围,并增加了青蛙各种基因组编辑应用的灵活性。
    BACKGROUND: The true diploid frog, Xenopus tropicalis (X. tropicalis) is an excellent genetic model organism. To date, the CRISPR/Cas-mediated genome editing methods established in this species are mostly based on SpCas9 that requires the stringent NGG protospacer-adjacent motif (PAM) for target recognition, which limits its genome editing scope. Thus, it is highly desirable to circumvent this limitation.
    RESULTS: Through one-cell stage injection of Cas/gRNAs into X. tropicalis embryos, we evaluated the mutagenic efficiency of 8 different Cas variants using T7EI assay, Sanger DNA sequencing, or deep sequencing. Our data indicate that SaCas9 and KKH SaCas9 are highly effective in frogs, which could be used for direct phenotyping in G0 embryos. In contrast, VQR Cas9, xCas9 3.7, SpG Cas9, and SpRY Cas9 were ineffective in X. tropicalis embryos and no activity was detected for iSpyMac Cas9. We also found that LbCas12a/crRNA RNP complexes with paired crRNAs efficiently induced small fragment deletions in X. tropicalis embryos.
    CONCLUSIONS: SaCas9 and KKH SaCas9 are robust genome editing tools in X. tropicalis embryos. LbCas12a/crRNA RNP complexes are useful for inducing DNA fragment deletions in frog embryos. These tools expand the CRISPR/Cas genome editing scope in X. tropicalis and increase the flexibility for various genome editing applications in frogs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CRISPR是一种新的基因组编辑技术,可用于治疗HIV等免疫性疾病。然而,CRISPR在干细胞中的应用对HIV相关研究并不有效,大部分研究是在体内进行的。本系统综述旨在为提高干细胞移植治疗HIV的CRISPR编辑效率提供新的研究思路。以及它的未来前景。
    在四个数据库中搜索了1952年至2020年期间发表的文章。采用PRISMA方法选择合适的研究论文。CAMARADES用于鉴定纸张质量。结果是移植效率,基因破坏百分比,分化能力,HIV抗性效率。
    筛选方法显示196篇论文提到了该主题。然而,只有5项研究符合研究目标.我们发现(1)双基因敲除法和敲入法两种研究思路提供抗HIV细胞,植入支持并避免心脏病作为HIV疾病的副作用。(2)核糖核蛋白(RNP)递送是递送CRISPR/Cas9的最佳方式,并且腺相关病毒(AAV)对于敲入目的将是有效的。(3)CRISPR/SaCas9可以取代CRISPR/Cas9在编辑HIV相关基因中的作用。
    未来应该更多地探索增加HIV抗性和干细胞移植的潜在基因。应应用双重敲除和敲入程序来建立更好的植入,以改善患者的HIV治疗或耐药性。CRISPR/SaCas9和RNP交付应该在未来得到更多的探索。
    PROSPEROCRD42020203312。
    CRISPR is a novel genomic editing technology which can be useful for the treatment of immune diseases such as HIV. However, the application of CRISPR in stem cells for HIV-related research was not effective, and most of the research was done in vivo. This systematic review is to identify a new research idea about increase CRISPR-editing efficiencies in stem cell transplantation for HIV treatment, as well as its future perspective.
    Four databases were searched for articles published during 1952 to 2020. PRISMA method was used to select appropriate research papers. CAMARADES was used to identify the paper quality. The outcome was engraftment efficiency, gene disruption percentage, differentiation ability, HIV-resistant efficiency.
    Screening method showed 196 papers mentioned the topic. However, only 5 studies were reliable with the research objective. We found that (1) Two research ideas which was double gene knockout and knockout-knockin method to provide HIV-resistant cells, engraftment support and avoid cardiac disease as an HIV disease side effect. (2) Ribonucleoprotein (RNP) delivery was the best way to deliver the CRISPR/Cas9 and Adeno-Associated Virus (AAV) would be effective for knockin purpose. (3) CRISPR/SaCas9 could replace CRISPR/Cas9 role in editing HIV-related gene.
    Potential genes to increase HIV resistance and stem cell engraftment should be explored more in the future. Double knockout and knock-in procedures should be applied to set up a better engraftment for improving HIV treatment or resistance of patients. CRISPR/SaCas9 and RNP delivery should be explored more in the future.
    PROSPERO CRD42020203312.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号