SWR1C

SWR1c
  • 文章类型: Journal Article
    酵母SWR1C染色质重塑酶催化核小体组蛋白H2A与组蛋白变体H2A的ATP依赖性交换。Z,涉及多种核功能的关键变体。14亚基SWR1C如何与核小体底物接合仍然是未知的。关于ISWI的研究,CHD1和SWI/SNF家族的染色质重塑酶已经证明了核小体酸性斑块对重塑活性的关键作用,然而,这种核小体表位在SWR1C核小体编辑中的作用尚未得到测试。这里,我们采用了多种生化试验来证明酸性贴片在H2A中的重要作用。Z交换反应。利用不对称组装的核小体,我们证明了在核小体的每一面上的酸性斑块是SWR1C介导的二聚体交换所必需的,表明SWR1C以“钳状”构象接合核小体,同时接合两个补丁。单个酸性贴片的丧失导致高亲和力核小体结合的丧失和ATP酶活性的核小体刺激。我们确定了Swc5亚基中保守的富含精氨酸的基序,该基序结合酸性斑块,并且是二聚体交换活性的关键。此外,我们的Swc5核小体复合物的冷冻EM结构表明,组蛋白H2B泛素化可能调控H2A。Z沉积。这些发现共同提供了SWR1C如何参与其核小体底物以促进高效H2A的新见解。Z沉积。
    The yeast SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated key roles for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the acidic patch in the H2A.Z exchange reaction. Utilizing asymmetrically assembled nucleosomes, we demonstrate that the acidic patches on each face of the nucleosome are required for SWR1C-mediated dimer exchange, suggesting SWR1C engages the nucleosome in a \'pincer-like\' conformation, engaging both patches simultaneously. Loss of a single acidic patch results in loss of high affinity nucleosome binding and nucleosomal stimulation of ATPase activity. We identify a conserved arginine-rich motif within the Swc5 subunit that binds the acidic patch and is key for dimer exchange activity. In addition, our cryoEM structure of a Swc5-nucleosome complex suggests that promoter proximal, histone H2B ubiquitylation may regulate H2A.Z deposition. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    不同的系统发育和底物特异性表明12种拟南芥卵巢肿瘤结构域(OTU)去泛素酶参与保守或植物特异性功能。otu5-1无效突变体表现出多效表型,包括早期开花,模仿在亚基中具有缺陷的突变体(例如,参与组蛋白H2A的SWR1复合物(SWR1c)的ARP6)。Z沉积。转录组和RT-qPCR分析表明,下调的FLC和MAF4-5负责otu5-1的早期开花。qChIP分析显示,激活和抑制组蛋白标记减少和增加,分别,在otu5-1中的FLC和MAF4-5上。亚细胞分馏,GFP融合表达,和MNase处理染色质表明OTU5是富含细胞核和染色质相关的。此外,发现OTU5与FLC和MAF4-5相关。OTU5相关蛋白复合物似乎与SWR1c不同,因为在arp6-1植物中OTU5复合物的分子量没有改变。此外,otu5-1arp6-1双突变体表现出协同表型,H2A。FLC/MAF4-5上的Z水平在arp6-1中降低,但在otu5-1中没有降低。我们的结果支持拟南芥OTU5独立于SWR1c起作用的命题,通过组蛋白修饰激活FLC和MAF4-5来抑制开花。双突变分析还表明OTU5独立于HUB1介导的途径起作用,但在自主途径突变体和FRIGIDA-Col中,FLC介导的开花抑制是部分必需的。
    Distinct phylogeny and substrate specificities suggest that 12 Arabidopsis Ovarian Tumor domain-containing (OTU) deubiquitinases participate in conserved or plant-specific functions. The otu5-1 null mutant displayed a pleiotropic phenotype, including early flowering, mimicking that of mutants harboring defects in subunits (e.g., ARP6) of the SWR1 complex (SWR1c) involved in histone H2A.Z deposition. Transcriptome and RT-qPCR analyses suggest that downregulated FLC and MAF4-5 are responsible for the early flowering of otu5-1. qChIP analyses revealed a reduction and increase in activating and repressive histone marks, respectively, on FLC and MAF4-5 in otu5-1. Subcellular fractionation, GFP-fusion expression, and MNase treatment of chromatin showed that OTU5 is nucleus-enriched and chromatin-associated. Moreover, OTU5 was found to be associated with FLC and MAF4-5. The OTU5-associated protein complex(es) appears to be distinct from SWR1c, as the molecular weights of OTU5 complex(es) were unaltered in arp6-1 plants. Furthermore, the otu5-1 arp6-1 double mutant exhibited synergistic phenotypes, and H2A.Z levels on FLC/MAF4-5 were reduced in arp6-1 but not otu5-1. Our results support the proposition that Arabidopsis OTU5, acting independently of SWR1c, suppresses flowering by activating FLC and MAF4-5 through histone modification. Double-mutant analyses also indicate that OTU5 acts independently of the HUB1-mediated pathway, but it is partially required for FLC-mediated flowering suppression in autonomous pathway mutants and FRIGIDA-Col.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核肌动蛋白与多种真核生物的动态染色质重排有关。在哺乳动物细胞中,需要重新定位双链DNA断裂以实现同源重组修复并通过促进PolII募集到基因启动子来增强转录。在酿酒酵母中,核肌动蛋白调节间期染色体动力学,并且需要将诱导的INO1基因重新定位到核外围。在这里,我们研究了肌动蛋白在出芽酵母中驱动热休克因子1(Hsf1)调节的热休克蛋白(HSP)基因之间的基因间相互作用中的作用。这些基因,分散在多条染色体上,细胞暴露于急性热应激后急剧复位,导致它们聚集在动态生物分子缩合物中。使用生长素诱导的降解策略,我们发现,线性或分支F-肌动蛋白(分别为Bni1/Bnr1和Arp2)的成核因子的条件消耗对热休克诱导的HSP基因聚结或转录几乎没有影响。此外,我们发现用latrunculinA(Lat-A)预处理细胞,丝状肌动蛋白和单体肌动蛋白的抑制剂,未能影响活化的HSP基因之间的基因间相互作用以及其热休克诱导的基因内循环和折叠。此外,Lat-A预处理对RNA或蛋白质水平的HSP基因表达几乎没有可检测的影响。在显著的对比中,我们证实激活的INO1重新定位至核外围及其适当表达确实需要肌动蛋白。总的来说,我们的工作表明,转录激活和三维基因组重组的热诱导,Hsf1调节的基因可以在不存在肌动蛋白的情况下发生。
    Nuclear actin has been implicated in dynamic chromatin rearrangements in diverse eukaryotes. In mammalian cells, it is required to reposition double-strand DNA breaks to enable homologous recombination repair and to enhance transcription by facilitating RNA Pol II recruitment to gene promoters. In the yeast Saccharomyces cerevisiae, nuclear actin modulates interphase chromosome dynamics and is required to reposition the induced INO1 gene to the nuclear periphery. Here, we have investigated the role of actin in driving intergenic interactions between Heat Shock Factor 1 (Hsf1)-regulated Heat Shock Protein (HSP) genes in budding yeast. These genes, dispersed on multiple chromosomes, dramatically reposition following exposure of cells to acute thermal stress, leading to their clustering within dynamic biomolecular condensates. Using an auxin-induced degradation strategy, we found that conditional depletion of nucleators of either linear or branched F-actin (Bni1/Bnr1 and Arp2, respectively) had little or no effect on heat shock-induced HSP gene coalescence or transcription. In addition, we found that pretreatment of cells with latrunculin A, an inhibitor of both filamentous and monomeric actin, failed to affect intergenic interactions between activated HSP genes and their heat shock-induced intragenic looping and folding. Moreover, latrunculin A pretreatment had little effect on HSP gene expression at either RNA or protein levels. In notable contrast, we confirmed that repositioning of activated INO1 to the nuclear periphery and its proper expression do require actin. Collectively, our work suggests that transcriptional activation and 3D genome restructuring of thermally induced, Hsf1-regulated genes can occur in the absence of actin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SWR1C染色质重塑酶催化核小体H2A的ATP依赖性置换。Z变体,调节关键的DNA介导的过程,如转录和DNA修复。这里,我们研究了组蛋白交换反应的瞬态动力学机制,雇用合奏FRET,荧光相关光谱(FCS),和ATP水解的稳态动力学。我们的研究表明,SWR1C在毫秒和微秒时间尺度上调节核小体动力学,平衡核小体用于二聚体交换反应。在单周转条件下进行的重塑反应的瞬时动力学分析揭示了核小体二聚体的ATP依赖性置换中的显着不对称性,通过局部DNA展开促进。一起来看,我们的瞬态动力学研究确定了中间体,并为SWR1C催化的二聚体交换反应提供了重要的见解,并阐明了H2A的力学原理。Z沉积可能有助于体内转录调控。
    The SWR1C chromatin remodeling enzyme catalyzes ATP-dependent replacement of nucleosomal H2A with the H2A.Z variant, regulating key DNA-mediated processes such as transcription and DNA repair. Here, we investigate the transient kinetic mechanism of the histone exchange reaction, employing ensemble FRET, fluorescence correlation spectroscopy (FCS), and the steady-state kinetics of ATP hydrolysis. Our studies indicate that SWR1C modulates nucleosome dynamics on both the millisecond and microsecond timescales, poising the nucleosome for the dimer exchange reaction. The transient kinetic analysis of the remodeling reaction performed under single turnover conditions unraveled a striking asymmetry in the ATP-dependent replacement of nucleosomal dimers, promoted by localized DNA unwrapping. Taken together, our transient kinetic studies identify intermediates and provide crucial insights into the SWR1C-catalyzed dimer exchange reaction and shed light on how the mechanics of H2A.Z deposition might contribute to transcriptional regulation in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号