SPAK

SPAK
  • 文章类型: Journal Article
    血管生成对于重塑和修复现有血管至关重要,该过程需要信号通路,包括由转化生长因子β(TGF-β)控制的信号通路。我们先前已经报道了TGF-β与无赖氨酸(K)1(WNK1)的蛋白激酶之间的串扰。编码WNK1的基因的纯合破坏导致在接近胚胎第E12天的小鼠中由于受损的血管生成而致死,并且这种缺陷可以通过激活形式的WNK1底物激酶OSR1的内皮特异性表达来挽救。然而,通过TGF-β和WNK1/OSR1之间的合作调节的分子过程还没有得到很好的理解。在这里,我们显示WNK1与E3泛素连接酶SMURF1/2相互作用。此外,我们发现WNK1和SMURF1/2之间复杂的相互调节,我们证明WNK1活性调节TGF-β受体水平,反过来,控制TGF-β信号传导。
    Angiogenesis is essential for remodeling and repairing existing vessels, and this process requires signaling pathways including those controlled by transforming growth factor beta (TGF-β). We have previously reported crosstalk between TGF-β and the protein kinase With No lysine (K) 1 (WNK1). Homozygous disruption of the gene encoding WNK1 results in lethality in mice near embryonic day E12 due to impaired angiogenesis and this defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase OSR1. However, molecular processes regulated via a collaboration between TGF-β and WNK1/OSR1 are not well understood. Here we show that WNK1 interacts with the E3 ubiquitin ligases SMURF1/2. In addition, we discovered complex inter-regulation between WNK1 and SMURF1/2 and we demonstrate that WNK1 activity regulates TGF-β receptor levels, in turn, controlling TGF-β signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生理和行为中的昼夜节律使生物体与外部环境循环同步。这里,苍蝇中央起搏器神经元细胞内氯化物的昼夜节律振荡,黑腹果蝇,已审查。细胞内氯化物将SLC12阳离子偶联的氯化物转运蛋白功能与激酶信号传导和向内整流钾通道的调节联系起来。
    Circadian rhythms in physiology and behavior sync organisms to external environmental cycles. Here, circadian oscillation in intracellular chloride in central pacemaker neurons of the fly, Drosophila melanogaster, is reviewed. Intracellular chloride links SLC12 cation-coupled chloride transporter function with kinase signaling and the regulation of inwardly rectifying potassium channels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经炎症是与许多神经系统疾病相关的病理事件,包括痴呆和中风.脉络丛(ChP)是脑室中分泌脑脊液(CSF)的关键结构,形成血液-CSF屏障,并通过招募免疫细胞和维持大脑中的免疫微环境来应对疾病。尽管这些关键角色,ChP在卒中后时间内的确切结构和功能变化仍有待阐明。我们通过短暂的大脑中动脉闭塞在C57BL/6J小鼠中诱发缺血性中风,导致脑血流量减少和梗塞性中风。中风后1-7天,我们检测到ChP血CSF屏障对白蛋白通透性的时间依赖性增加,紧密连接损坏,SPAK-NKCC1蛋白复合物的动态变化,CSF生产和清除的关键离子运输监管系统。在两个侧脑室ChP中观察到SPAK蛋白复合物的短暂丢失,但SPAK-NKCC1复合物的磷酸化增加。最有趣的是,卒中后第5天,卒中还引发了ChP中促炎性Lcn2mRNA及其蛋白的升高以及抗炎骨髓细胞的浸润.这些发现表明,缺血性中风对ChP血-CSF屏障造成显著损害,有助于亚急性期的神经炎症。
    Neuroinflammation is a pathological event associated with many neurological disorders, including dementia and stroke. The choroid plexus (ChP) is a key structure in the ventricles of the brain that secretes cerebrospinal fluid (CSF), forms a blood-CSF barrier, and responds to disease conditions by recruiting immune cells and maintaining an immune microenvironment in the brain. Despite these critical roles, the exact structural and functional changes to the ChP over post-stroke time remain to be elucidated. We induced ischemic stroke in C57BL/6J mice via transient middle cerebral artery occlusion which led to reduction of cerebral blood flow and infarct stroke. At 1-7 days post-stroke, we detected time-dependent increase in the ChP blood-CSF barrier permeability to albumin, tight-junction damage, and dynamic changes of SPAK-NKCC1 protein complex, a key ion transport regulatory system for CSF production and clearance. A transient loss of SPAK protein complex but increased phosphorylation of the SPAK-NKCC1 complex was observed in both lateral ventricle ChPs. Most interestingly, stroke also triggered elevation of proinflammatory Lcn2 mRNA and its protein as well as infiltration of anti-inflammatory myeloid cells in ChP at day 5 post-stroke. These findings demonstrate that ischemic strokes cause significant damage to the ChP blood-CSF barrier, contributing to neuroinflammation in the subacute stage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脉络丛(ChP)是血-脑脊液(CSF)屏障,是CSF的主要来源。获得性脑积水,由脑部感染或出血引起,缺乏药物治疗由于晦涩的病理生物学。我们的综合,对感染后脑积水(PIH)和出血性脑积水(PHH)模型的多项研究显示,脂多糖和血液分解产物在ChP-CSF界面引发高度相似的TLR4依赖性免疫应答.由此产生的CSF“细胞因子风暴”,由外周来源和边界相关的ChP巨噬细胞引起,通过TNF受体相关激酶SPAK的磷酸化激活导致ChP上皮细胞的CSF产生增加,作为多离子转运蛋白复合物的调节支架。遗传或药理学免疫调节通过拮抗SPAK依赖性CSF分泌过多而预防PIH和PHH。这些结果揭示了ChP作为一个动态的,具有高度调节的免疫分泌能力的细胞异质性组织,扩大我们对ChP免疫上皮细胞串扰的理解,并将PIH和PHH重新构建为相关的神经免疫疾病,易受小分子药物治疗的影响。
    The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF \"cytokine storm\", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    无赖氨酸(K)(WNK)激酶已被确定为II型假醛固酮增多症(PHAII)的致病基因,一种罕见的遗传性高血压疾病,以高钾血症为特征,高氯血症代谢性酸中毒,和噻嗪类超敏反应。我们认为,阐明WNK与NaCl协同转运蛋白(NCC)之间的联系将为我们带来新的NCC调控机制。第一次,我们能够产生PHAII基因敲入小鼠模型和抗磷酸化NCC抗体,抗推定NCC磷酸化位点,并发现NCC的组成型激活和NCC磷酸化增加是该疾病在体内的主要发病机制.此后,我们证明了这种调节机制是由激酶氧化应激反应蛋白1(OSR1)和STE20/SPS1相关的脯氨酸/富含丙氨酸的激酶(SPAK)(WNK-OSR1/SPAK-NCC信号传导级联)介导的,并且该信号传导不仅在PHAII的病理状况中很重要,而且在NCC的调节中起着至关重要的生理作用。
    With-no-lysine (K) (WNK) kinases have been identified as the causal genes for pseudohypoaldosteronism type II (PHAII), a rare hereditary hypertension condition characterized by hyperkalemia, hyperchloremic metabolic acidosis, and thiazide-hypersensitivity. We thought that clarifying the link between WNK and NaCl cotransporter (NCC) would bring us new mechanism(s) of NCC regulation. For the first time, we were able to produce a knock-in mouse model of PHAII and anti-phosphorylated NCC antibodies against the putative NCC phosphorylation sites and discover that constitutive activation of NCC and increased phosphorylation of NCC are the primary pathogenesis of the disease in vivo. We have since demonstrated that this regulatory mechanism is mediated by the kinases oxidative stress-response protein 1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK) (WNK-OSR1/SPAK-NCC signaling cascade) and that the signaling is not only important in the pathological condition of PHAII but also plays a crucial physiological role in the regulation of NCC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SPAK抑制剂ZT-1a先前显示在小鼠缺血性中风模型中具有神经保护作用。在这项研究中,我们进一步检查了四种ZT-1a衍生物(ZT-1c,-1d,-1g和-1h)减少中风引起的感觉运动功能损害和脑部病变。在中风后3-21小时期间,通过渗透泵向成年C57BL/6J小鼠施用媒介物对照(Veh)或ZT-1衍生物。在中风后第1、3、5和7天评估这些小鼠的神经行为,随后在离体大脑中进行MRST2WI和DTI分析。与Sham小鼠相比,Veh治疗的中风小鼠表现出感觉运动功能缺陷。相比之下,接受ZT-1a衍生物的小鼠在卒中后3-7天表现出显著降低的神经功能缺损(p<0.05),与ZT-1a,ZT-1c和ZT-1d显示出比ZT-1h和ZT-1g更大的影响。ZT-1a治疗在减少T2WI上的脑损伤体积和保留NeuN神经元方面最有效(p<0.01),其次是ZT-1d>-1c>-1g>-1h。Veh治疗的中风小鼠表现出白质组织损伤,外囊内各向异性分数(FA)或轴向扩散率(AD)值降低,内囊和海马。相比之下,只有ZT-1a和ZT-1c治疗的卒中小鼠表现出显著更高的FA和AD值.这些发现表明,中风后服用SPAK抑制剂ZT-1a及其衍生物(ZT-1c和ZT-1d)可有效保护缺血性大脑中的灰质和白质组织,显示缺血性中风治疗发展的潜力。
    SPAK inhibitor ZT-1a was previously shown to be neuroprotective in murine ischemic stroke models. In this study, we further examined the efficacy of four ZT-1a derivatives (ZT-1c, -1d, -1g and -1h) on reducing stroke-induced sensorimotor function impairment and brain lesions. Vehicle control (Veh) or ZT-1 derivatives were administered via osmotic pump to adult C57BL/6J mice during 3-21 h post-stroke. Neurological behavior of these mice was assessed at days 1, 3, 5, and 7 post-stroke and MRI T2WI and DTI analysis was subsequently conducted in ex vivo brains. Veh-treated stroke mice displayed sensorimotor function deficits compared to Sham mice. In contrast, mice receiving ZT-1a derivatives displayed significantly lower neurological deficits at days 3-7 post-stroke (p < 0.05), with ZT-1a, ZT-1c and ZT-1d showing greater impact than ZT-1h and ZT-1g. ZT-1a treatment was the most effective in reducing brain lesion volume on T2WI and in preserving NeuN + neurons (p < 0.01), followed by ZT-1d > -1c > -1g > -1h. The Veh-treated stroke mice displayed white matter tissue injury, reflected by reduced fractional anisotropy (FA) or axial diffusivity (AD) values in external capsule, internal capsule and hippocampus. In contrast, only ZT-1a-as well as ZT-1c-treated stroke mice exhibited significantly higher FA and AD values. These findings demonstrate that post-stroke administration of SPAK inhibitor ZT-1a and its derivatives (ZT-1c and ZT-1d) is effective in protecting gray and white matter tissues in ischemic brains, showing a potential for ischemic stroke therapy development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    无赖氨酸(K)(WNK)激酶是一类进化上古老的激酶,具有催化赖氨酸的非典型位置和多种生理作用。最近的研究表明,WNK受到氯化物的直接调控,钾,和渗透压。这里,我们回顾了WNK作为氯化物敏感激酶的发现,并讨论了已证明WNK的氯化物调节的生理背景。这些包括肾脏,胰管,神经元,和炎症细胞。我们讨论了渗透压和细胞内氯化物在细胞体积调节中的相互依存关系。我们回顾了WNK的钾调节的最新证明,并推测了可能的生理作用。最后,讨论了WNK细胞内离子和渗透压调节的结构和机理。
    The with no lysine (K) (WNK) kinases are an evolutionarily ancient group of kinases with atypical placement of the catalytic lysine and diverse physiological roles. Recent studies have shown that WNKs are directly regulated by chloride, potassium, and osmotic pressure. Here, we review the discovery of WNKs as chloride-sensitive kinases and discuss physiological contexts in which chloride regulation of WNKs has been demonstrated. These include the kidney, pancreatic duct, neurons, and inflammatory cells. We discuss the interdependent relationship of osmotic pressure and intracellular chloride in cell volume regulation. We review the recent demonstration of potassium regulation of WNKs and speculate on possible physiological roles. Finally, structural and mechanistic aspects of intracellular ion and osmotic pressure regulation of WNKs are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转移是癌症患者死亡的主要原因。对小鼠模型和患者数据的分析表明,蛋白激酶WNK1是与一组侵袭性癌症独特相关的少数基因之一。WNK1信号通路广泛涉及离子共转运蛋白的调节和控制细胞对渗透胁迫的反应。在这篇综述中,我们将讨论其在人类癌症中肿瘤恶性肿瘤中的作用,并提供其在侵袭中的功能的证据。迁移,血管生成和间质转化。
    Metastasis is the major cause of mortality in cancer patients. Analyses of mouse models and patient data have implicated the protein kinase WNK1 as one of a handful of genes uniquely linked to a subset of invasive cancers. WNK1 signaling pathways are widely implicated in the regulation of ion co-transporters and in controlling cell responses to osmotic stress. In this review we will discuss its actions in tumor malignancy in human cancers and present evidence for its function in invasion, migration, angiogenesis and mesenchymal transition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:脉络丛(ChP)血-脑脊液(CSF)屏障功能障碍和淋巴细胞侵袭在中风的神经炎症反应中的潜在机制尚不清楚。在这项研究中,我们调查了中风是否由于主要的ChP离子转运系统的失调而损害了血-CSF屏障的完整性,Na+-K+-Cl-共转运蛋白1(NKCC1),和调节性Ste20相关的富含脯氨酸-丙氨酸激酶(SPAK)。
    方法:在C57Bl/6J小鼠中诱导假或缺血性中风。通过免疫荧光染色和免疫印迹定量ChP中SPAK-NKCC1复合物和紧密连接蛋白(TJs)的变化。通过流式细胞术和免疫染色评估ChP中的免疫细胞浸润。使用培养的ChP上皮细胞(CPEC)和皮质神经元来评估H2O2介导的氧化应激刺激SPAK-NKCC1复合物和细胞损伤。检查了SPAK抑制剂ZT-1a或NKCC1抑制剂布美他尼对ChPSPAK-NKCC1级联的体内或体外药理阻断。
    结果:缺血性卒中刺激了CPECs顶端膜SPAK-NKCC1复合物的激活,NF-κB,和MMP9,这与血液-CSF屏障完整性的丧失和增加的免疫细胞浸润到ChP有关。氧化应激直接激活SPAK-NKCC1通路,导致细胞凋亡,神经变性,和NKCC1介导的离子流入。SPAK-NKCC1通路的药理学阻断保护了ChP屏障的完整性,减弱的ChP免疫细胞浸润或神经元死亡。
    结论:卒中诱导的SPAK-NKCC1级联的病理刺激导致CPECs损伤和TJs在血-CSF屏障的破坏。ChPSPAK-NKCC1复合物可作为减轻卒中后ChP功能障碍和淋巴细胞侵袭的治疗靶点。
    BACKGROUND: The mechanisms underlying dysfunction of choroid plexus (ChP) blood-cerebrospinal fluid (CSF) barrier and lymphocyte invasion in neuroinflammatory responses to stroke are not well understood. In this study, we investigated whether stroke damaged the blood-CSF barrier integrity due to dysregulation of major ChP ion transport system, Na+-K+-Cl- cotransporter 1 (NKCC1), and regulatory Ste20-related proline-alanine-rich kinase (SPAK).
    METHODS: Sham or ischemic stroke was induced in C57Bl/6J mice. Changes on the SPAK-NKCC1 complex and tight junction proteins (TJs) in the ChP were quantified by immunofluorescence staining and immunoblotting. Immune cell infiltration in the ChP was assessed by flow cytometry and immunostaining. Cultured ChP epithelium cells (CPECs) and cortical neurons were used to evaluate H2O2-mediated oxidative stress in stimulating the SPAK-NKCC1 complex and cellular damage. In vivo or in vitro pharmacological blockade of the ChP SPAK-NKCC1 cascade with SPAK inhibitor ZT-1a or NKCC1 inhibitor bumetanide were examined.
    RESULTS: Ischemic stroke stimulated activation of the CPECs apical membrane SPAK-NKCC1 complex, NF-κB, and MMP9, which was associated with loss of the blood-CSF barrier integrity and increased immune cell infiltration into the ChP. Oxidative stress directly activated the SPAK-NKCC1 pathway and resulted in apoptosis, neurodegeneration, and NKCC1-mediated ion influx. Pharmacological blockade of the SPAK-NKCC1 pathway protected the ChP barrier integrity, attenuated ChP immune cell infiltration or neuronal death.
    CONCLUSIONS: Stroke-induced pathological stimulation of the SPAK-NKCC1 cascade caused CPECs damage and disruption of TJs at the blood-CSF barrier. The ChP SPAK-NKCC1 complex emerged as a therapeutic target for attenuating ChP dysfunction and lymphocyte invasion after stroke.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    中枢起搏神经元调节昼夜节律,并在哺乳动物和哺乳动物的电活动中经历昼夜变化。1,2已经提出哺乳动物起搏神经元细胞内氯化物浓度的昼夜节律变化通过GABAA受体氯化物通道影响对GABA能神经传递的反应。结果是矛盾的,4-9和最近的一项研究表明,起搏器神经元氯化物的昼夜节律变化对GABA反应没有影响。10因此,细胞内氯化物是否以及如何调节昼夜节律仍存在争议。这里,我们证明了果蝇小腹侧外侧(sLNv)起搏器神经元中细胞内氯化物的信号传导作用。在控制苍蝇,在整个早晨,sLNvs的细胞内氯化物增加。通过钠-钾-2-氯化物(NKCC)和氯化钾(KCC)共转运蛋白的氯化物转运是细胞内氯化物浓度的主要决定因素。11果蝇在Ncc69编码的NKCC中具有功能丧失突变的黑腹果蝇在点亮后6小时内具有异常低的细胞内氯化物,失去了早晨的预期,和延长的昼夜节律。kcc损失,预计会增加细胞内的氯化物,抑制Ncc69突变果蝇的长期表型。氯化物抑制激酶级联的激活,由WNK(无赖氨酸[K])激酶及其下游底物组成,Fray,是必要的,足以延长周期长度。射线激活向内整流钾通道,Irk1也是长周期表型所必需的。这些结果表明,果蝇sLNv起搏器中NKCC依赖性细胞内氯化物的升高抑制了WNK-Fray信号传导和向内整流钾通道的过度激活,以维持正常的昼夜节律。
    Central pacemaker neurons regulate circadian rhythms and undergo diurnal variation in electrical activity in mammals and flies.1,2 Circadian variation in the intracellular chloride concentration of mammalian pacemaker neurons has been proposed to influence the response to GABAergic neurotransmission through GABAA receptor chloride channels.3 However, results have been contradictory,4-9 and a recent study demonstrated circadian variation in pacemaker neuron chloride without an effect on GABA response.10 Therefore, whether and how intracellular chloride regulates circadian rhythms remains controversial. Here, we demonstrate a signaling role for intracellular chloride in the Drosophila small ventral lateral (sLNv) pacemaker neurons. In control flies, intracellular chloride increases in sLNvs over the course of the morning. Chloride transport through sodium-potassium-2-chloride (NKCC) and potassium-chloride (KCC) cotransporters is a major determinant of intracellular chloride concentrations.11Drosophila melanogaster with loss-of-function mutations in the NKCC encoded by Ncc69 have abnormally low intracellular chloride 6 h after lights on, loss of morning anticipation, and a prolonged circadian period. Loss of kcc, which is expected to increase intracellular chloride, suppresses the long-period phenotype of Ncc69 mutant flies. Activation of a chloride-inhibited kinase cascade, consisting of WNK (with no lysine [K]) kinase and its downstream substrate, Fray, is necessary and sufficient to prolong period length. Fray activation of an inwardly rectifying potassium channel, Irk1, is also required for the long-period phenotype. These results indicate that the NKCC-dependent rise in intracellular chloride in Drosophila sLNv pacemakers restrains WNK-Fray signaling and overactivation of an inwardly rectifying potassium channel to maintain normal circadian period length.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号