SMC5/6

Smc5 / 6
  • 文章类型: Journal Article
    Smc5/6复合物是参与维持基因组完整性的高度保守的分子机器。虽然其功能很大程度上依赖于抑制Mph1在酵母中的叉重塑活性,在人类中是否存在类似的Smc5/6-FANCM调节仍然未知.我们产生了在Smc5/6复合物的NSE1亚基中具有突变的人细胞系。NSE1的RING结构域中的点突变或截短导致Smc5/6蛋白水平急剧下降,环中两个锌配位中心的贡献不同。此外,nse1-RING突变细胞显示细胞生长缺陷,降低复制分叉率,和增加基因组的不稳定性。值得注意的是,我们的发现揭示了Smc5/6和FANCM之间的合成病态相互作用,并表明Smc5/6以独立于FANCM的方式控制叉进展和染色体分离。总的来说,我们的研究表明,NSE1RING域在Smc5/6复合物的稳定性和通过非进化保守途径的分叉进展中起着至关重要的作用。
    The Smc5/6 complex is a highly conserved molecular machine involved in the maintenance of genome integrity. While its functions largely depend on restraining the fork remodeling activity of Mph1 in yeast, the presence of an analogous Smc5/6-FANCM regulation in humans remains unknown. We generated human cell lines harboring mutations in the NSE1 subunit of the Smc5/6 complex. Point mutations or truncations in the RING domain of NSE1 result in drastically reduced Smc5/6 protein levels, with differential contribution of the two zinc-coordinating centers in the RING. In addition, nse1-RING mutant cells display cell growth defects, reduced replication fork rates, and increased genomic instability. Notably, our findings uncover a synthetic sick interaction between Smc5/6 and FANCM and show that Smc5/6 controls fork progression and chromosome disjunction in a FANCM-independent manner. Overall, our study demonstrates that the NSE1 RING domain plays vital roles in Smc5/6 complex stability and fork progression through pathways that are not evolutionary conserved.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    乙型肝炎病毒(HBV)感染肝细胞和劫持其复制的宿主细胞机制。宿主蛋白可以是细胞防御的前线效应物,并通过在细胞内生命周期中阻碍多个步骤来限制病毒复制。这篇综述总结了许多描述良好的制约因素,他们的限制机制,和HBV的对策,特别关注病毒转录。我们讨论了关于制约因素的一些局限性和知识差距,强调如何利用这些因素来促进针对HBV的治疗策略。
    The hepatitis B virus (HBV) infects hepatocytes and hijacks host cellular mechanisms for its replication. Host proteins can be frontline effectors of the cell\'s defense and restrict viral replication by impeding multiple steps during its intracellular lifecycle. This review summarizes many of the well-described restriction factors, their mechanisms of restriction, and counteractive measures of HBV, with a special focus on viral transcription. We discuss some of the limitations and knowledge gaps about the restriction factors, highlighting how these factors may be harnessed to facilitate therapeutic strategies against HBV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    染色体(SMC)蛋白质复合物的结构维持-粘附素,凝集素,和Smc5/6复合物(Smc5/6)-对于染色体功能是必需的。在分子水平上,这些复合物通过环挤压折叠DNA。因此,连环蛋白在间期产生染色体环,凝聚素压缩有丝分裂染色体。然而,Smc5/6最近发现的DNA环挤压活性的作用是未知的。这里,我们发现Smc5/6在芽殖酵母(酿酒酵母)染色体上依赖粘附蛋白的环边界与转录诱导的正超螺旋DNA相关。机械上,单分子成像显示Smc5/6的二聚体特异性识别正超螺旋DNAplectonemes的尖端,并有效地启动环挤出以将超螺旋DNA聚集到大的plectonemic环中。最后,Hi-C分析表明,Smc5/6以顺式连接包含转录诱导的正超螺旋的染色体区域。总之,我们的发现表明,Smc5/6通过识别和启动正超螺旋DNA上的环挤压来控制染色体的三维组织。
    The structural maintenance of chromosomes (SMC) protein complexes-cohesin, condensin, and the Smc5/6 complex (Smc5/6)-are essential for chromosome function. At the molecular level, these complexes fold DNA by loop extrusion. Accordingly, cohesin creates chromosome loops in interphase, and condensin compacts mitotic chromosomes. However, the role of Smc5/6\'s recently discovered DNA loop extrusion activity is unknown. Here, we uncover that Smc5/6 associates with transcription-induced positively supercoiled DNA at cohesin-dependent loop boundaries on budding yeast (Saccharomyces cerevisiae) chromosomes. Mechanistically, single-molecule imaging reveals that dimers of Smc5/6 specifically recognize the tip of positively supercoiled DNA plectonemes and efficiently initiate loop extrusion to gather the supercoiled DNA into a large plectonemic loop. Finally, Hi-C analysis shows that Smc5/6 links chromosomal regions containing transcription-induced positive supercoiling in cis. Altogether, our findings indicate that Smc5/6 controls the three-dimensional organization of chromosomes by recognizing and initiating loop extrusion on positively supercoiled DNA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人们普遍认为,DNA复制叉失速是细胞增殖过程中常见的现象,但是有强大的机制可以缓解这种情况,并确保DNA复制在染色体分离之前完成。SMC5/6复合物一直与维持复制叉的完整性有关。然而,SMC5/6复合物在哺乳动物细胞中DNA复制过程中的重要作用尚未阐明。在这项研究中,我们研究了SMC5/6在小鼠胚胎干细胞(mESCs)复制叉丢失的分子后果,在定义的复制叉失速和重启的细胞环境中,采用生长素诱导的Degron(AID)系统急剧且可逆地耗尽SMC5。在SMC5耗尽的细胞中,我们在停止的复制叉的重新启动中发现了一个缺陷,由过量的MRE11介导的叉子切除和叉子保护因子对停滞的叉子的扰动定位支撑。以前,我们证明了SMC5/6与COP9信号体(CSN)的物理和功能相互作用,一种酶促调节cullin环连接酶(CRL)活性的cullindeddase。采用DNA纤维技术的组合,AID系统,小分子抑制试验,和免疫荧光显微镜分析,我们发现SMC5/6通过负向调节COP9信号体(CSN)来促进叉保护因子对停滞复制叉的定位。我们建议SMC5/6介导的CSN调节可确保保持CRL活性及其在DNA复制叉稳定中的作用,以在缓解复制叉失速时允许有效的复制叉重启。
    It is widely accepted that DNA replication fork stalling is a common occurrence during cell proliferation, but there are robust mechanisms to alleviate this and ensure DNA replication is completed prior to chromosome segregation. The SMC5/6 complex has consistently been implicated in the maintenance of replication fork integrity. However, the essential role of the SMC5/6 complex during DNA replication in mammalian cells has not been elucidated. In this study, we investigate the molecular consequences of SMC5/6 loss at the replication fork in mouse embryonic stem cells (mESCs), employing the auxin-inducible degron (AID) system to deplete SMC5 acutely and reversibly in the defined cellular contexts of replication fork stall and restart. In SMC5-depleted cells, we identify a defect in the restart of stalled replication forks, underpinned by excess MRE11-mediated fork resection and a perturbed localization of fork protection factors to the stalled fork. Previously, we demonstrated a physical and functional interaction of SMC5/6 with the COP9 signalosome (CSN), a cullin deneddylase that enzymatically regulates cullin ring ligase (CRL) activity. Employing a combination of DNA fiber techniques, the AID system, small-molecule inhibition assays, and immunofluorescence microscopy analyses, we show that SMC5/6 promotes the localization of fork protection factors to stalled replication forks by negatively modulating the COP9 signalosome (CSN). We propose that the SMC5/6-mediated modulation of the CSN ensures that CRL activity and their roles in DNA replication fork stabilization are maintained to allow for efficient replication fork restart when a replication fork stall is alleviated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Smc5/6复合物(Smc5/6)在真核生物中重要用于基因组复制和修复。其细胞功能与Smc5和Smc6亚基的ATPase活性密切相关。该活性需要两个SMC亚基的马达结构域的二聚化,并且由六个非SMC亚基(Nse1至Nse6)调节。在NSE中,Nse5和Nse6形成稳定的亚复合物(Nse5-6),其抑制复合物的ATP酶活性。然而,这一调控的潜在机制和生物学意义尚不清楚.这里,我们使用结构和功能研究来解决这些问题。我们确定了酵母Smc5/6的冷冻-EM结构,该结构源自由所有八个亚基或五个亚基的子集组成的复合物。两种结构都表明Nse5-6与Smc6的运动域和相邻的卷曲螺旋段相关,称为颈部区域。我们的结构分析表明,这种结合与马达结构域二聚化相容,但导致Nse4亚基从Smc6颈部移位。由于Nse4-Smc6颈部相互作用有利于运动结构域参与,因此有利于ATPase活性,Nse6与Nse4的竞争可以解释Nse5-6如何不利于ATP酶活性。这种调节原则上可以不同地影响Smc5/6介导的过程,这取决于它们对复合物的ATP酶活性的需要。的确,细胞中的诱变数据提供了证据,表明Nse6-Smc6颈相互作用对于DNA修复中间体的解析很重要,但对于复制终止却不重要。因此,我们的结果为Nse5-6如何调节Smc5/6的ATPase活性和细胞功能提供了分子基础。
    The Smc5/6 complex (Smc5/6) is important for genome replication and repair in eukaryotes. Its cellular functions are closely linked to the ATPase activity of the Smc5 and Smc6 subunits. This activity requires the dimerization of the motor domains of the two SMC subunits and is regulated by the six non-SMC subunits (Nse1 to Nse6). Among the NSEs, Nse5 and Nse6 form a stable subcomplex (Nse5-6) that dampens the ATPase activity of the complex. However, the underlying mechanisms and biological significance of this regulation remain unclear. Here, we address these issues using structural and functional studies. We determined cryo-EM structures of the yeast Smc5/6 derived from complexes consisting of either all eight subunits or a subset of five subunits. Both structures reveal that Nse5-6 associates with Smc6\'s motor domain and the adjacent coiled-coil segment, termed the neck region. Our structural analyses reveal that this binding is compatible with motor domain dimerization but results in dislodging the Nse4 subunit from the Smc6 neck. As the Nse4-Smc6 neck interaction favors motor domain engagement and thus ATPase activity, Nse6\'s competition with Nse4 can explain how Nse5-6 disfavors ATPase activity. Such regulation could in principle differentially affect Smc5/6-mediated processes depending on their needs of the complex\'s ATPase activity. Indeed, mutagenesis data in cells provide evidence that the Nse6-Smc6 neck interaction is important for the resolution of DNA repair intermediates but not for replication termination. Our results thus provide a molecular basis for how Nse5-6 modulates the ATPase activity and cellular functions of Smc5/6.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    乙型肝炎病毒是一种致病性病毒,感染全球3亿人,导致慢性肝炎,肝硬化,和肝细胞癌。乙型肝炎病毒编码四种蛋白质。其中,HBx蛋白在HBV发病机制中起着核心作用。因为HBx蛋白被认为在病毒复制和肝癌的诱导中起着核心作用,其功能的调节可能是开发针对乙型肝炎的新干预措施的关键因素。描述了HBx蛋白相关的病毒复制和肝癌发生机制,重点关注最近报道的与Smc5/6蛋白复合物降解相关的病毒复制机制。我们还讨论了我们最近发现的一种化合物,抑制HBx蛋白诱导的Smc5/6蛋白复合物的降解,对病毒复制和肝癌发生都有抑制作用。最后,展望了HBx蛋白未来研究的前景。
    Hepatitis B virus is a pathogenic virus that infects 300 million people worldwide and causes chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Hepatitis B virus encodes four proteins. Among them, the HBx protein plays a central role in the HBV pathogenesis. Because the HBx protein is considered to play a central role in the induction of viral replication and hepatocarcinogenesis, the regulation of its function could be a key factor in the development of new interventions against hepatitis B. In this review, HBx protein-related viral replication and hepatocarcinogenesis mechanisms are described, with a focus on the recently reported viral replication mechanisms related to degradation of the Smc5/6 protein complex. We also discuss our recent discovery of a compound that inhibits HBx protein-induced degradation of the Smc5/6 protein complex, and that exerts inhibitory effects on both viral replication and hepatocarcinogenesis. Finally, prospects for future research on the HBx protein are described.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    染色体5/6复合物(Smc5/6)的宿主结构维持是抑制病毒ccDNA转录的乙型肝炎病毒(HBV)的限制因子。HBV通过表达靶向Smc5/6的调节X蛋白(HBx)通过DNA损伤结合蛋白1(DDB1)E3泛素连接酶降解来拮抗这种限制。然而,Smc5/6如何与HBx相互作用的分子见解仍然难以捉摸。在这项研究中,我们系统地研究了Smc5/6和HBx之间的相互作用。在下拉测定中,在不存在DDB1的情况下,Smc5/6通过多个位点与HBx相互作用。HBxC-末端对于相互作用是足够的。最重要的是,残基Phe132,这是严格保守的所有HBV亚型,对于在体外和体内与Smc5/6的相互作用至关重要。该位点(F132A)的突变导致Smc5/6相互作用的缺陷,染色体外报告转录,和HBV生产在细胞和小鼠模型。总的来说,我们的数据确定了HBx上Smc5/6相互作用和病毒生产的关键残基。这些结果为基础研究和靶向HBx的治疗药物提供了有价值的信息。
    The host structural maintenance of chromosomes 5/6 complex (Smc5/6) is a restriction factor of hepatitis B virus (HBV) that inhibits the transcription of viral ccDNA. HBV antagonizes this restriction by expressing the regulatory X protein (HBx) which targets Smc5/6 for degradation via DNA damage-binding protein 1 (DDB1) E3 ubiquitin ligase. However, the molecular insights into how Smc5/6 interacts with HBx remain elusive. In this study, we systematically investigated the interaction between Smc5/6 and HBx. Smc5/6 interacts with HBx through multiple sites in the absence of DDB1 in the pull-down assay. HBx C-terminal is sufficient for the interaction. Most importantly, residue Phe132, which is strictly conserved in all HBV subtypes, is critical for interaction with Smc5/6 both in vitro and in vivo. Mutation of this site (F132A) results in defect in Smc5/6 interaction, extrachromosomal reporter transcription, and HBV production both in cells and in mouse model. Collectively, our data identifies a key residue on HBx for Smc5/6 interaction and viral production. These results provide valuable information for both basic research and therapeutic drugs targeting HBx.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人SMC5/6复合物是基因组稳定性的保守守护者和抗病毒应答的新兴组分。这些不同的功能可能需要SMC5/6调节的不同机制。在酵母中,Smc5/6由其Nse5/6亚基调节,但是人类SMC5/6的这些调节亚基定义不明确。这里,我们鉴定了一个名为SIMC1的新型SMC5/6亚基,它含有SUMO相互作用基序(SIM)和一个Nse5样结构域.我们从多瘤病毒大T抗原(LT)诱导的亚核区室中SMC5/6的蛋白质组环境中分离出SIMC1。SIMC1使用其SIM和Nse5样结构域将SMC5/6定位到富含SUMO的PML核体的多瘤病毒复制中心(PyVRC)。SIMC1的Nse5样结构域与假定的Nse6直向同源物SLF2结合,形成类似酵母Nse5/6结构的反平行螺旋二聚体。基于SIMC1-SLF2结构的诱变定义了一个保守的表面区域,该区域包含SIMC1螺旋结构域的N末端,该区域调节SMC5/6定位至PyVRC。此外,SLF1通过其BRCT和ARD基序将SMC5/6招募到DNA损伤中,与SIMC1类似地结合SLF2并形成单独的Nse5/6样复合物。因此,两个具有不同募集域的Nse5/6样复合物控制人SMC5/6定位。
    The human SMC5/6 complex is a conserved guardian of genome stability and an emerging component of antiviral responses. These disparate functions likely require distinct mechanisms of SMC5/6 regulation. In yeast, Smc5/6 is regulated by its Nse5/6 subunits, but such regulatory subunits for human SMC5/6 are poorly defined. Here, we identify a novel SMC5/6 subunit called SIMC1 that contains SUMO interacting motifs (SIMs) and an Nse5-like domain. We isolated SIMC1 from the proteomic environment of SMC5/6 within polyomavirus large T antigen (LT)-induced subnuclear compartments. SIMC1 uses its SIMs and Nse5-like domain to localize SMC5/6 to polyomavirus replication centers (PyVRCs) at SUMO-rich PML nuclear bodies. SIMC1\'s Nse5-like domain binds to the putative Nse6 orthologue SLF2 to form an anti-parallel helical dimer resembling the yeast Nse5/6 structure. SIMC1-SLF2 structure-based mutagenesis defines a conserved surface region containing the N-terminus of SIMC1\'s helical domain that regulates SMC5/6 localization to PyVRCs. Furthermore, SLF1, which recruits SMC5/6 to DNA lesions via its BRCT and ARD motifs, binds SLF2 analogously to SIMC1 and forms a separate Nse5/6-like complex. Thus, two Nse5/6-like complexes with distinct recruitment domains control human SMC5/6 localization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    染色体(SMC)复合物的结构维持对于整个细胞周期的染色质组织和功能至关重要。粘附素和凝集素SMCs折叠和系链DNA,而Smc5/6直接促进DNA复制和修复。SMC的功能依赖于它们参与DNA的能力,但是Smc5/6如何结合和易位在DNA上仍然未知。这里,我们展示了DNA结合的酿酒酵母Smc5/6复合物的3.8进行低温电子显微镜(cryo-EM)结构,其中包含其五个核心亚基,包括Smc5、Smc6和Nse1-3-4亚复合物。这些亚基之间的复杂相互作用支持围绕DNA双螺旋的夹钳的形成。卡钳的带正电荷的内表面以非序列特异性方式接触DNA,涉及来自四个亚基的许多DNA结合残基。DNA双链体由Smc5和6头部区域支撑,并位于它们的卷曲螺旋臂区域之间,反映接合头和开臂配置。Nse3亚基从上面保护DNA,而钩形Nse4kleisin形成连接DNA和所有其他亚基的支架。Smc5/6DNA钳与其他SMC形成的DNA钳相似,但也表现出反映其独特功能的差异。将来自无DNA的Smc5/6的交联质谱数据映射到DNA结合的Smc5/6结构鉴定了能够捕获DNA的多亚基构象变化。最后,来自细胞的突变数据揭示了每个亚基对Smc5/6染色质关联和细胞适应性的不同DNA结合贡献。总之,我们的综合研究阐明了独特的SMC复合物如何使DNA参与支持基因组调控。
    Structural maintenance of chromosomes (SMC) complexes are essential for chromatin organization and functions throughout the cell cycle. The cohesin and condensin SMCs fold and tether DNA, while Smc5/6 directly promotes DNA replication and repair. The functions of SMCs rely on their abilities to engage DNA, but how Smc5/6 binds and translocates on DNA remains largely unknown. Here, we present a 3.8 Å cryogenic electron microscopy (cryo-EM) structure of DNA-bound Saccharomyces cerevisiae Smc5/6 complex containing five of its core subunits, including Smc5, Smc6, and the Nse1-3-4 subcomplex. Intricate interactions among these subunits support the formation of a clamp that encircles the DNA double helix. The positively charged inner surface of the clamp contacts DNA in a nonsequence-specific manner involving numerous DNA binding residues from four subunits. The DNA duplex is held up by Smc5 and 6 head regions and positioned between their coiled-coil arm regions, reflecting an engaged-head and open-arm configuration. The Nse3 subunit secures the DNA from above, while the hook-shaped Nse4 kleisin forms a scaffold connecting DNA and all other subunits. The Smc5/6 DNA clamp shares similarities with DNA-clamps formed by other SMCs but also exhibits differences that reflect its unique functions. Mapping cross-linking mass spectrometry data derived from DNA-free Smc5/6 to the DNA-bound Smc5/6 structure identifies multi-subunit conformational changes that enable DNA capture. Finally, mutational data from cells reveal distinct DNA binding contributions from each subunit to Smc5/6 chromatin association and cell fitness. In summary, our integrative study illuminates how a unique SMC complex engages DNA in supporting genome regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Smc5/6,像cohesin和凝集素,是对基因组稳定性至关重要的染色体复合体的结构维持。与粘蛋白和凝集素不同,Smc5/6携带具有SUMOE3连接酶活性的必需Nse2亚基。在裂殖酵母中筛选新的DNA复制检查点突变体时,我们已经在Smc5/6中鉴定了两个先前未表征的突变体。突变体和一系列先前报道的Smc5/6突变体的表征发现,Nse2对RecQ解旋酶Rqh1的sumoylation化可促进复制叉处的检查点信号传导。我们发现消除Rqh1的sumoylation位点或解旋酶活性的突变损害了类似于缺乏连接酶活性的nse2突变体的检查点信号传导。令人惊讶的是,在无解旋酶活性的rqh1突变体中引入磺酰化位点突变可促进细胞在应激下的存活。这些发现,连同其他基因数据,支持Smc5/6-Nse2对Rqh1的sumoylation募集Rqh1或调节其分叉处的解旋酶活性以促进检查点信号传导的机制。自从Smc5/6复合物以来,Rqh1和复制检查点在真核生物中是保守的,类似的检查点机制可以在人类细胞中操作。
    Smc5/6, like cohesin and condensin, is a structural maintenance of chromosomes complex crucial for genome stability. Unlike cohesin and condensin, Smc5/6 carries an essential Nse2 subunit with SUMO E3 ligase activity. While screening for new DNA replication checkpoint mutants in fission yeast, we have identified two previously uncharacterized mutants in Smc5/6. Characterization of the mutants and a series of previously reported Smc5/6 mutants uncovered that sumoylation of the RecQ helicase Rqh1 by Nse2 facilitates the checkpoint signaling at the replication fork. We found that mutations that eliminate the sumoylation sites or the helicase activity of Rqh1 compromised the checkpoint signaling similar to a nse2 mutant lacking the ligase activity. Surprisingly, introducing a sumoylation site mutation to a helicase-inactive rqh1 mutant promoted cell survival under stress. These findings, together with other genetic data, support a mechanism that sumoylation of Rqh1 by Smc5/6-Nse2 recruits Rqh1 or modulates its helicase activity at the fork to facilitate the checkpoint signaling. Since the Smc5/6 complex, Rqh1, and the replication checkpoint are conserved in eukaryotes, a similar checkpoint mechanism may be operating in human cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号