SH3KBP1

SH3KBP1
  • 文章类型: Journal Article
    胶质母细胞瘤(GBM)是成人中最常见和侵袭性的脑肿瘤。表皮生长因子受体(EGFR)的过表达或激活通常发生在多种人类癌症中,并促进肿瘤发生。然而,EGFR异常激活的潜在分子机制和下游信号通路仍然未知.在这项研究中,我们报道SH3-结构域激酶结合蛋白1(SH3KBP1)mRNA和蛋白水平在GBM中都高表达,其高表达与胶质瘤患者的生存率降低相关.此外,我们提供的证据表明,SH3KBP1在GBM干细胞(GSCs)中显著表达,并有可能作为一种新的GSCs标志物。此外,沉默SH3KBP1会显著损害GBM细胞增殖,GSCs的体外迁移和自我更新能力以及体内异种移植肿瘤的生长。最重要的是,我们发现SH3KBP1与EGFR直接相互作用,并可能作为衔接蛋白转导EGFR信号.一起,我们的工作揭示了SH3KBP1作为致癌EGFR信号的新型调节因子,也是EGFR激活的GBM患者的潜在治疗靶点.
    Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Overexpression or activation of epidermal growth factor receptor (EGFR) occurs commonly in multiple human cancers and promotes tumorigenesis. However, the underlying molecular mechanism of EGFR aberrant activation and the downstream signaling pathways remains largely unknown. In this study, we report that both SH3-domain kinase binding protein 1 (SH3KBP1) mRNA and protein levels are highly expressed in GBM and its high expression is associated with worse survival of glioma patients. In addition, we provide evidence that SH3KBP1 is prominently expressed in GBM stem cells (GSCs) and have potential to serve as a novel GSCs marker. Moreover, silencing SH3KBP1 dramatically impairs GBM cell proliferation, migration and GSCs self-renewal ability in vitro and xenograft tumors growth in vivo. Most importantly, we found that SH3KBP1 directly interacts with EGFR and may act as an adaptor protein to transduce EGFR signaling. Together, our work uncovers SH3KBP1 as a novel regulator of oncogenic EGFR signaling and also as a potential therapeutic target for GBM patients with EGFR activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Venezuelan equine encephalitis virus (VEEV) is one of the important human and animal pathogens. It forms replication enzyme complexes (RCs) containing viral nonstructural proteins (nsPs) that mediate the synthesis of virus-specific RNAs. The assembly and associated functions of RC also depend on the presence of a specific set of host proteins. Our study demonstrates that the hypervariable domain (HVD) of VEEV nsP3 interacts with the members of the FXR family of cellular proteins and also binds the Src homology 3 (SH3) domain-containing proteins CD2AP and SH3KBP1. Interactions with FXR family members are mediated by the C-terminal repeating peptide of HVD. A single short, minimal motif identified in this study is sufficient for driving efficient VEEV replication in the absence of HVD interactions with other host proteins. The SH3 domain-containing proteins bind to another fragment of VEEV HVD. They can promote viral replication in the absence of FXR-HVD interactions albeit less efficiently. VEEV replication can be also switched from an FXR-dependent to a chikungunya virus-specific, G3BP-dependent mode. The described modifications of VEEV HVD have a strong impact on viral replication in vitro and pathogenesis. Their effects on viral pathogenesis depend on mouse age and the genetic background of the virus.IMPORTANCE The replication of alphaviruses is determined by specific sets of cellular proteins, which mediate the assembly of viral replication complexes. Some of these critical host factors interact with the hypervariable domain (HVD) of alphavirus nsP3. In this study, we have explored binding sites of host proteins, which are specific partners of nsP3 HVD of Venezuelan equine encephalitis virus. We also define the roles of these interactions in viral replication both in vitro and in vivo A mechanistic understanding of the binding of CD2AP, SH3KBP1, and FXR protein family members to VEEV HVD uncovers important aspects of alphavirus evolution and determines new targets for the development of alphavirus-specific drugs and directions for viral attenuation and vaccine development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    UNASSIGNED: From genome wide association studies on Alzheimer\'s disease (AD), it has been shown that many single nucleotide polymorphisms (SNPs) of genes of different pathways affect the disease risk. One of the pathways is endocytosis, and variants in these genes may affect their functions in amyloid precursor protein (APP) trafficking, amyloid-beta (Aβ) production as well as its clearance in the brain. This study uses computational methods to predict the effect of novel SNPs, including untranslated region (UTR) variants, splice site variants, synonymous SNPs (sSNPs) and non-synonymous SNPs (nsSNPs) in three endocytosis genes associated with AD, namely PICALM, SYNJ1 and SH3KBP1.
    UNASSIGNED: All the variants\' information was retrieved from the Ensembl genome database, and then different variation prediction analyses were performed. UTRScan was used to predict UTR variants while MaxEntScan was used to predict splice site variants. Meta-analysis by PredictSNP2 was used to predict sSNPs. Parallel prediction analyses by five different software packages including SIFT, PolyPhen-2, Mutation Assessor, I-Mutant2.0 and SNPs&GO were used to predict the effects of nsSNPs. The level of evolutionary conservation of deleterious nsSNPs was further analyzed using ConSurf server. Mutant protein structures of deleterious nsSNPs were modelled and refined using SPARKS-X and ModRefiner for structural comparison.
    UNASSIGNED: A total of 56 deleterious variants were identified in this study, including 12 UTR variants, 18 splice site variants, eight sSNPs and 18 nsSNPs. Among these 56 deleterious variants, seven variants were also identified in the Alzheimer\'s Disease Sequencing Project (ADSP), Alzheimer\'s Disease Neuroimaging Initiative (ADNI) and Mount Sinai Brain Bank (MSBB) studies.
    UNASSIGNED: The 56 deleterious variants were predicted to affect the regulation of gene expression, or have functional impacts on these three endocytosis genes and their gene products. The deleterious variants in these genes are expected to affect their cellular function in endocytosis and may be implicated in the pathogenesis of AD as well. The biological consequences of these deleterious variants and their potential impacts on the disease risks could be further validated experimentally and may be useful for gene-disease association study.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Alphavirus nsP3 proteins contain long, intrinsically disordered, hypervariable domains, HVD, which serve as hubs for interaction with many cellular proteins. Here, we have deciphered the mechanism and function of HVD interaction with host factors in alphavirus replication. Using NMR spectroscopy, we show that CHIKV HVD contains two SH3 domain-binding sites. Using an innovative chemical shift perturbation signature approach, we demonstrate that CD2AP interaction with HVD is mediated by its SH3-A and SH3-C domains, and this leaves the SH3-B domain available for interaction with other cellular factor(s). This cooperative interaction with two SH3 domains increases binding affinity to CD2AP and possibly induces long-range allosteric effects in HVD. Our data demonstrate that BIN1, CD2AP and SH3KBP1 play redundant roles in initiation of CHIKV replication. Point mutations in both CHIKV HVD binding sites abolish its interaction with all three proteins, CD2AP, BIN1 and SH3KBP1. This results in strong inhibition of viral replication initiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    人类中的旧世界甲病毒(Togaviridae家族)的基孔肯雅病毒(CHIKV)感染可引起关节炎和关节痛。该病毒编码四种非结构蛋白(nsP)(nsP1,nsp2,nsP3和nsP4),它们充当病毒复制酶的亚基。这些蛋白质还与许多宿主蛋白质相互作用,并且一些关键的相互作用由nsP3的非结构化C末端高变结构域(HVD)介导。在这项研究中,建立了表达用CHIKVnsP3HVD标记的EGFP的人细胞系。使用定量蛋白质组学,发现CHIKVnsP3HVD可以结合细胞骨架蛋白,包括CD2AP,SH3KBP1、CAPZA1、CAPZA2和CAPZB。发现与CD2AP的相互作用最明显;其结合位点被映射到nsP3HVD中的第二个SH3配体样元件。进一步的评估表明CD2AP可以结合许多不同的新世界和旧世界甲病毒的nsP3HVD。短结合元件的突变阻碍了病毒建立感染的能力。该突变还消除了CD2AP与nsP3和CHIKV的复制复合物共定位的能力;对于具有类似突变的SemlikiForest病毒(SFV)也观察到了同样的情况。类似于CD2AP,其同源物SH3KBP1也结合了CHIKV和SFVnsP3中鉴定的基序。
    Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • DOI:
    文章类型: Journal Article
    迟发性阿尔茨海默病(LOAD)是一种复杂的多因素疾病。到目前为止,已经确定了10个LOAD基因座,包括APOE,Picalm,CLU,BIN1,CD2AP,CR1、CD33、EPHA1、ABCA7和MS4A4A/MS4A6E,但是它们解释了大约50%的遗传风险,因此需要识别其他风险基因。淀粉样β(Aβ)斑块在LOAD患者的大脑中形成,被认为是该疾病的病理标志。最近12个新的Aβ毒性修饰基因(ADSSL1,PICALM,SH3KBP1,XRN1,SNX8,PPP2R5C,FBXL2,MAP2K4,SYNJ1,RABGEF1,POMT2和XPO1)已被确定可能在LOAD风险中起作用。在这项研究中,在1291例LOAD病例和958例认知正常对照中,我们研究了这12个候选基因中222个SNP与LOAD风险的相关性.使用PLINK进行单位点和单倍型分析。在调整APOE基因型后,年龄,性别,和主要成分,我们在PPP2R5C中发现了单核苷酸多态性(SNPs),Picalm,SH3KBP1、XRN1和SNX8与LOAD风险显著相关。顶部SNP位于PPP2R5C的内含子3(P=0.009017),随后是PICALM中的内含子19SNP(P=0.0102)。单倍型分析显示ADSSL1、PICALM、PPP2R5C,SNX8和SH3KBP1基因。我们的数据表明,这些新候选基因的遗传变异会影响LOAD的风险。进一步研究这些基因,包括在其他病例对照样品中的额外复制和功能研究,以阐明它们影响Aβ的途径,有必要确定这些基因参与LOAD风险的程度。
    Late-onset Alzheimer\'s disease (LOAD) is a complex and multifactorial disease. So far ten loci have been identified for LOAD, including APOE, PICALM, CLU, BIN1, CD2AP, CR1, CD33, EPHA1, ABCA7, and MS4A4A/MS4A6E, but they explain about 50% of the genetic risk and thus additional risk genes need to be identified. Amyloid beta (Aβ) plaques develop in the brains of LOAD patients and are considered to be a pathological hallmark of this disease. Recently 12 new Aβ toxicity modifier genes (ADSSL1, PICALM, SH3KBP1, XRN1, SNX8, PPP2R5C, FBXL2, MAP2K4, SYNJ1, RABGEF1, POMT2, and XPO1) have been identified that potentially play a role in LOAD risk. In this study, we have examined the association of 222 SNPs in these 12 candidate genes with LOAD risk in 1291 LOAD cases and 958 cognitively normal controls. Single site and haplotype analyses were performed using PLINK. Following adjustment for APOE genotype, age, sex, and principal components, we found single nucleotide polymorphisms (SNPs) in PPP2R5C, PICALM, SH3KBP1, XRN1, and SNX8 that showed significant association with risk of LOAD. The top SNP was located in intron 3 of PPP2R5C (P=0.009017), followed by an intron 19 SNP in PICALM (P=0.0102). Haplotype analysis revealed significant associations in ADSSL1, PICALM, PPP2R5C, SNX8, and SH3KBP1 genes. Our data indicate that genetic variation in these new candidate genes affects the risk of LOAD. Further investigation of these genes, including additional replication in other case-control samples and functional studies to elucidate the pathways by which they affect Aβ, are necessary to determine the degree of involvement these genes have for LOAD risk.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号