SH2 domain

SH2 域
  • 文章类型: Journal Article
    酪氨酸磷酸酶Src同源性-2结构域含有蛋白酪氨酸磷酸酶-2(SHP2)的突变与多种人类疾病有关。SHP2中的大多数突变通过破坏其磷酸酶结构域和N末端SH2(磷酸酪氨酸识别)结构域之间的自抑制相互作用来增加其基础催化活性。相比之下,位于N端或C端SH2结构域的配体结合口袋中的一些疾病相关突变不会增加基础活性,并可能通过替代机制发挥其致病性.我们缺乏对这些SH2突变如何影响SHP2结构的分子理解,活动,和信号。这里,我们通过高通量生化筛选的组合表征了五个SHP2SH2结构域配体结合口袋突变体,生物物理和生化测量,和分子动力学模拟。我们表明,虽然这些突变中的一些改变了与磷酸化位点的结合亲和力,在N-SH2结构域中的T42A突变是独特的,因为它也实质上改变了配体结合特异性,尽管与SH2域的特异性决定区域相距8至10。该突变通过重塑磷酸酪氨酸结合口袋发挥其对序列特异性的影响,改变配体上磷酸酪氨酸和周围残基的接合模式。这种改变的特异性的功能结果是T42A突变体对激活配体的子集具有偏倚的敏感性并增强下游信号传导。我们的研究强调了疾病相关突变的细微差别作用机制的一个例子,其特征是蛋白质-蛋白质相互作用特异性的变化,从而改变酶的激活。
    Mutations in the tyrosine phosphatase Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting autoinhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8 to 10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine-binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    招募到大脑和脊髓中的促炎性T淋巴细胞介导多发性硬化症(MS),目前尚无治愈MS的方法。产生IFN-γ的Th1细胞诱导脊髓上行性瘫痪,而产生IL-17的Th17细胞介导小脑共济失调。STAT1和STAT3是Th1和Th17开发所必需的,分别,因此,同时靶向STAT1和STAT3途径是抑制脊髓和脑部疾病的潜在治疗策略。然而,STAT1和STAT3的药理学靶向由于它们的细胞内定位而提出了重大挑战。我们已经开发了一种源自骆驼科动物的STAT特异性单结构域纳米抗体(SBT-100),其靶向STAT1和STAT3的Src同源物2(SH2)结构域中的保守残基。这项研究调查了SBT-100是否可以抑制实验性自身免疫性脑脊髓炎(EAE),MS的小鼠模型我们表明SBT-100通过抑制脑和脊髓中Th17和Th1细胞的扩增来改善脑脊髓炎。过继转移实验表明,SBT-100处理的EAE小鼠的淋巴细胞诱导EAE的能力降低,这表明免疫抑制作用来源于直接抑制产脑病T细胞。SBT-100的小尺寸使这种STAT特异性纳米抗体成为中枢神经系统自身免疫性疾病的有前途的免疫疗法,包括多发性硬化症.
    Proinflammatory T-lymphocytes recruited into the brain and spinal cord mediate multiple sclerosis (MS) and currently there is no cure for MS. IFN-γ-producing Th1 cells induce ascending paralysis in the spinal cord while IL-17-producing Th17 cells mediate cerebellar ataxia. STAT1 and STAT3 are required for Th1 and Th17 development, respectively, and the simultaneous targeting of STAT1 and STAT3 pathways is therefore a potential therapeutic strategy for suppressing disease in the spinal cord and brain. However, the pharmacological targeting of STAT1 and STAT3 presents significant challenges because of their intracellular localization. We have developed a STAT-specific single-domain nanobody (SBT-100) derived from camelids that targets conserved residues in Src homolog 2 (SH2) domains of STAT1 and STAT3. This study investigated whether SBT-100 could suppress experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We show that SBT-100 ameliorates encephalomyelitis through suppressing the expansion of Th17 and Th1 cells in the brain and spinal cord. Adoptive transfer experiments revealed that lymphocytes from SBT-100-treated EAE mice have reduced capacity to induce EAE, indicating that the immunosuppressive effects derived from the direct suppression of encephalitogenic T-cells. The small size of SBT-100 makes this STAT-specific nanobody a promising immunotherapy for CNS autoimmune diseases, including multiple sclerosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    有许多基因产生与疾病相关的蛋白质,这些蛋白质可以用药物作为潜在的治疗方法。药物发现技术的最新进展为通过靶向疾病相关蛋白治疗各种疾病创造了新的机会。与传统方法相比,基于结构的药物发现是一种更快,更具成本效益的方法。SHP2磷酸酶,由PTPN11基因编码,由于它参与了许多类型的疾病,因此一直是人们关注的焦点。SHP2的生物学功能主要通过其SH2结构域的蛋白质-蛋白质相互作用来实现。在这项研究中,我们报告了通过基于结构的药物发现方法鉴定了SHP2的N-SH2结构域的潜在小分子抑制剂。我们利用分子对接研究,其次是分子动力学模拟和MM/PBSA计算,分析从广泛的药物再利用中心和ZINC15数据库中检索到的化合物。我们从文库中选择了具有最佳对接得分的10个命中化合物,并检查了它们在N-SH2结构域中的结合性质。我们发现化合物CID60838(伊立替康)是最合适的化合物,其结合自由能值为-64.45kcal/mol,并且与结构域中的靶残基发生显著相互作用。
    There are many genes that produce proteins related to diseases and these proteins can be targeted with drugs as a potential therapeutic approach. Recent advancement in drug discovery techniques have created new opportunities for treating variety of diseases by targeting disease-related proteins. Structure-based drug discovery is a faster and more cost-effective approach than traditional methods. SHP2 phosphatase, encoded by the PTPN11 gene, has been the focus of much attention due to its involvement in many types of diseases. The biological function of SHP2 is enabled mostly by protein-protein interaction through its SH2 domains. In this study, we report the identification of a potential small molecule inhibitor for the N-SH2 domain of SHP2 by structure-based drug discovery approach. We utilized molecular docking studies, followed by molecular dynamics simulations and MM/PBSA calculations, to analyze compounds retrieved from the Broad\'s Drug Repurposing Hub and ZINC15 databases. We selected 10 hit compounds with the best docking scores from the libraries and examined their binding properties in the N-SH2 domain. We found that compound CID 60838 (Irinotecan) was the most suitable compound with a binding free energy value of - 64.45 kcal/mol and significant interactions with the target residues in the domain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生长因子受体结合蛋白2(GRB2)是一种非酶衔接蛋白,在从细胞表面受体到细胞反应的精确调控信号级联中起关键作用。包括信号转导和基因表达。GRB2与许多靶分子结合,从而调节具有不同功能的复杂细胞信号网络。GRB2的结构特征对其功能至关重要,因为它的多域和相互作用机制支撑了它在细胞生物学中的作用。涉及GRB2的典型信号传导途径由配体刺激其受体酪氨酸激酶(RTK)启动。RTK的激活导致GRB2通过其SH2结构域募集到受体上的磷酸化酪氨酸残基。GRB2,反过来,通过其SH3结构域与Sevenless之子(SOS)蛋白结合。这种结合促进了Ras的激活,一个小的GTPase,这触发了一系列下游信令事件,最终导致细胞增殖,生存,和差异化。对GRB2的结构和功能的进一步研究和探索具有巨大的潜力,可以提供新的见解和策略来增强相关疾病的医学方法。在这次审查中,我们概述了与GRB2结构域相关的蛋白质,以及不同GRB2结构域在控制细胞信号传导途径中的功能。这为针对GRB2的治疗药物的即将到来的发展提供了当前研究的要点。
    Growth-factor-receptor-binding protein 2 (GRB2) is a non-enzymatic adaptor protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression. GRB2 binds to numerous target molecules, thereby modulating a complex cell signaling network with diverse functions. The structural characteristics of GRB2 are essential for its functionality, as its multiple domains and interaction mechanisms underpin its role in cellular biology. The typical signaling pathway involving GRB2 is initiated by the ligand stimulation to its receptor tyrosine kinases (RTKs). The activation of RTKs leads to the recruitment of GRB2 through its SH2 domain to the phosphorylated tyrosine residues on the receptor. GRB2, in turn, binds to the Son of Sevenless (SOS) protein through its SH3 domain. This binding facilitates the activation of Ras, a small GTPase, which triggers a cascade of downstream signaling events, ultimately leading to cell proliferation, survival, and differentiation. Further research and exploration into the structure and function of GRB2 hold great potential for providing novel insights and strategies to enhance medical approaches for related diseases. In this review, we provide an outline of the proteins that engage with domains of GRB2, along with the function of different GRB2 domains in governing cellular signaling pathways. This furnishes essential points of current studies for the forthcoming advancement of therapeutic medications aimed at GRB2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Src-同源性-2(SH2)结构域选择性结合位于靶结合蛋白中的磷酸酪氨酸(pTyr)残基;因此,它们是pTyr介导的信号通路的关键要素。SH2结构域与pTyr的结合作为一种对接机制,吸引蛋白质进入信号中枢,在某些情况下,它还可以调节信号酶如蛋白激酶或蛋白磷酸酶的催化活性。因此,选择性结合SH2结构域的化合物可潜在地用于调节此类含SH2结构域的酶的活性。本章介绍了如何通过肽与SH2结构域的变构结合来测量蛋白酪氨酸磷酸酶活性的调节,并以从细菌中纯化的人重组蛋白酪氨酸磷酸酶SHP2(含Src同源-2结构域的蛋白酪氨酸磷酸酶2)为例。在存在以不同浓度选择性结合和激活SHP2的肽的情况下,随时间测量针对人工底物DiFMUP(6,8-二氟-4-甲基伞形基磷酸酯)的磷酸酶活性,以确定半数最大有效浓度(EC50)。
    Src-homology-2 (SH2) domains bind selectively to phosphotyrosine (pTyr) residues located in target binding proteins; therefore, they are key elements in pTyr-mediated signaling pathways. The binding of an SH2 domain to a pTyr acts as a docking mechanism that attracts proteins into signaling hubs, and in some cases, it can also regulate the catalytic activity of signaling enzymes such as protein kinases or protein phosphatases. Therefore, compounds that selectively bind SH2 domains can be potentially used to modulate the activity of such SH2 domain-containing enzymes. This chapter describes how to measure the regulation of protein tyrosine phosphatase activity through allosteric binding of peptides to SH2 domains, and uses human recombinant protein tyrosine phosphatase SHP2 (Src homology-2 domain-containing protein tyrosine phosphatase 2) purified from bacteria as a case example. The phosphatase activity against the artificial substrate DiFMUP (6, 8-Difluoro-4-Methylumbelliferyl Phosphate) is measured over time in the presence of a peptide that selectively binds and activates SHP2 at different concentrations to determine the half maximal effective concentration (EC50).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    该方案公开了具有大环肽支架的单羧酸抑制剂的合成,以与GRB2SH2结构域结合并破坏GRB2和含磷酸酪氨酸的蛋白质之间的蛋白质-蛋白质相互作用(PPI)。
    This protocol discloses the synthesis of monocarboxylic inhibitors with a macrocyclic peptide scaffold to bind with the GRB2 SH2 domain and disrupt the protein-protein interactions (PPIs) between GRB2 and phosphotyrosine-containing proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    筛选候选配体的抑制剂文库是药物发现过程中的重要步骤。基于热变性的筛选策略建立在蛋白质-配体复合物与单独的蛋白质相比具有改变的稳定性特征的前提下。因此,这些测定提供了用于对直接与感兴趣的蛋白质靶标接合的配体进行分层的可接近且快速的方法。这里,我们描述了三种基于变性的策略,用于检查蛋白质抑制剂结合,在SH2域的上下文中。这包括传统的基于染料的热转移测定(TSA),非常规标记的基于配体的TSA,和细胞热转移测定(CETSA)。常规的基于染料的TSA报告了外部疏水性染料的荧光,因为随着温度逐渐升高,其与热暴露的非极性蛋白质表面相互作用。相比之下,非常规标记的配体TSA涉及一种荧光标记的探针(SH2结构域的磷酸肽),该探针在变性过程中与蛋白质解离时被猝灭.CETSA涉及随着温度升高通过蛋白质印迹监测蛋白质的存在。在所有三种方法中,在候选配体的存在下进行测定可以改变蛋白质的熔解谱。这些测定提供了主要的筛选工具,以检查具有不同化学基序的SH2结构域抑制剂库,并讨论了每种方法的优点和局限性的子集。
    Screening of inhibitor libraries for candidate ligands is an important step in the drug discovery process. Thermal denaturation-based screening strategies are built on the premise that a protein-ligand complex has an altered stability profile compared to the protein alone. As such, these assays provide an accessible and rapid methodology for stratifying ligands that directly engage with the protein target of interest. Here, we describe three denaturation-based strategies for examining protein-inhibitor binding, in the context of SH2 domains. This includes conventional dye-based Thermal Shift Assays (TSA), nonconventional labeled ligand-based TSA, and Cellular Thermal Shift Assays (CETSA). Conventional dye-based TSA reports on the fluorescence of an external hydrophobic dye as it interacts with heat-exposed nonpolar protein surfaces as the temperature is incrementally increased. By contrast, nonconventional-labeled ligand TSA involves a fluorescence-tagged probe (phosphopeptide for SH2 domains) that is quenched as it dissociates from the protein during the denaturation process. CETSA involves monitoring the presence of the protein via Western blotting as the temperature is increased. In all three approaches, performing the assay in the presence of a candidate ligand can alter the melting profile of the protein. These assays offer primary screening tools to examine SH2 domain inhibitors libraries with varying chemical motifs, and a subset of the advantages and limitations of each approach is also discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    短线性基序(SLiMs)的SH2结合磷酸酪氨酸类是关键的条件性调控元件,特别是在细胞膜下的信号蛋白复合物中。除了传输蜂窝信令信息之外,它们还可以在侵入性病原体的细胞劫持中发挥作用。研究人员可以利用生物信息学工具和资源来预测内在无序蛋白质区域中保守磷酸酪氨酸残基的基序。可以建立候选SH2结合基序并将其分配给一个或多个SH2结构域亚组。是的,然而,预测哪些SH2结构域能够结合给定的候选物并不那么简单。这在很大程度上是由于结合氨基酸的协同性质,其使得当其它残基是最佳时能够耐受较差的结合残基。高通量肽阵列是用于获得SH2结构域结合特异性的强大工具。但是他们无法捕捉到这些合作效应,也有其他缺点。组织和细胞类型表达可以帮助限制可用的相互作用者列表:例如,一些经过充分研究的SH2结构域蛋白仅存在于免疫细胞谱系中。在这篇文章中,我们提供了一个基序模式表和四个生物信息学策略,介绍了一系列可用于细胞和病原体蛋白质基序狩猎的工具。实验随访对于确定哪些含SH2结构域/基序的蛋白质是实际的功能伴侣是必需的。
    The SH2-binding phosphotyrosine class of short linear motifs (SLiMs) are key conditional regulatory elements, particularly in signaling protein complexes beneath the cell\'s plasma membrane. In addition to transmitting cellular signaling information, they can also play roles in cellular hijack by invasive pathogens. Researchers can take advantage of bioinformatics tools and resources to predict the motifs at conserved phosphotyrosine residues in regions of intrinsically disordered protein. A candidate SH2-binding motif can be established and assigned to one or more of the SH2 domain subgroups. It is, however, not so straightforward to predict which SH2 domains are capable of binding the given candidate. This is largely due to the cooperative nature of the binding amino acids which enables poorer binding residues to be tolerated when the other residues are optimal. High-throughput peptide arrays are powerful tools used to derive SH2 domain-binding specificity, but they are unable to capture these cooperative effects and also suffer from other shortcomings. Tissue and cell type expression can help to restrict the list of available interactors: for example, some well-studied SH2 domain proteins are only present in the immune cell lineages. In this article, we provide a table of motif patterns and four bioinformatics strategies that introduce a range of tools that can be used in motif hunting in cellular and pathogen proteins. Experimental followup is essential to determine which SH2 domain/motif-containing proteins are the actual functional partners.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    p120RasGAP蛋白含有两个Src同源2(SH2)域,每个都具有磷酸酪氨酸结合活性。我们描述了分离和纯化的p120RasGAPSH2结构域与来自结合伴侣蛋白的磷酸肽的结晶,p190RhoGAP。将纯化的重组SH2结构域蛋白与合成磷酸肽以化学计量比混合以在体外形成复合物。然后通过在特定的储层溶液上的悬滴蒸气扩散方法实现结晶,其产生含有SH2结构域蛋白和磷酸肽的单个大分子共晶体。该协议产生用于X射线衍射研究的合适晶体,我们最近对p120RasGAP的两个SH2结构域的X射线晶体学研究表明,N端SH2结构域以规范的相互作用结合磷酸肽。相比之下,C端SH2结构域通过独特的非典型结合模式结合磷酸肽。p120RasGAP的晶体学研究表明,尽管SH2结构域的三维结构及其与磷酸酪氨酸肽结合的分子细节是明确的,仔细的结构分析可以继续产生新的分子水平的见解。
    The p120RasGAP protein contains two Src homology 2 (SH2) domains, each with phosphotyrosine-binding activity. We describe the crystallization of the isolated and purified p120RasGAP SH2 domains with phosphopeptides derived from a binding partner protein, p190RhoGAP. Purified recombinant SH2 domain protein is mixed with synthetic phosphopeptide at a stoichiometric ratio to form the complex in vitro. Crystallization is then achieved by the hanging drop vapor diffusion method over specific reservoir solutions that yield single macromolecular co-crystals containing SH2 domain protein and phosphopeptide. This protocol yields suitable crystals for X-ray diffraction studies, and our recent X-ray crystallography studies of the two SH2 domains of p120RasGAP demonstrate that the N-terminal SH2 domain binds phosphopeptide in a canonical interaction. In contrast, the C-terminal SH2 domain binds phosphopeptide via a unique atypical binding mode. The crystallographic studies for p120RasGAP illustrate that although the three-dimensional structure of SH2 domains and the molecular details of their binding to phosphotyrosine peptides are well defined, careful structural analysis can continue to yield new molecular-level insights.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    酪氨酸磷酸酶SHP2中的大多数疾病相关突变通过使其自抑制状态不稳定而增加其基础催化活性。相比之下,一些突变不会增加SHP2的基础活性,并可能通过替代机制发挥其致病性.我们缺乏对这些突变如何影响SHP2结构的分子理解,活动,和信号。这里,我们使用高通量生化筛选,表征了在SHP2的调节磷酸酪氨酸识别结构域的配体结合口袋内发生的五个这样的突变,生物物理和生化测量,分子动力学模拟,和细胞测定。虽然许多这些突变影响结合亲和力,T42A突变的独特之处在于它还改变了配体结合特异性。因此,T42A突变体对激活磷蛋白的一部分具有偏倚敏感性.我们的研究强调了疾病相关突变的细微差别作用机制的一个例子,其特征是蛋白质-蛋白质相互作用特异性的变化,从而改变酶的激活。
    Mutations in the tyrosine phosphatase SHP2 are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting auto-inhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that, while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8-10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号