S‐nitrosylation

  • 文章类型: Journal Article
    作为信号分子,一氧化氮(NO)调节不同生物体的发育和应激反应。NO的主要生物活性是蛋白质S-亚硝基化,其在真菌中的功能仍不清楚。这里,它在稻瘟病真菌稻瘟病菌中发现,脱亚硝基化过程对于感染过程中的功能性附着层形成至关重要。NO过度积累引起的硝化应激对真菌感染有害。而S-亚硝基谷胱甘肽还原酶GSNOR介导的脱亚硝基化可在附睾形成过程中消除过量的NO毒性以促进感染。通过indoTMT开关标记蛋白质组学技术,鉴定了483种蛋白质中的741S-亚硝基化位点。关键吸食蛋白,如MgB1、MagB、Sps1、Cdc42和隔膜,被GSNOR通过脱亚硝基活化。去除上述蛋白质的S-亚硝基化位点对于适当的蛋白质结构和表观功能至关重要。因此,GSNOR介导的脱亚硝基化是附着层形成的重要调节因子。还表明,NO供体打破NO稳态,没有清除剂,以及GSNOR的化学抑制剂,是控制真菌病的有效方法。
    As a signaling molecule, nitric oxide (NO) regulates the development and stress response in different organisms. The major biological activity of NO is protein S-nitrosylation, whose function in fungi remains largely unclear. Here, it is found in the rice blast fungus Magnaporthe oryzae, de-nitrosylation process is essential for functional appressorium formation during infection. Nitrosative stress caused by excessive accumulation of NO is harmful for fungal infection. While the S-nitrosoglutathione reductase GSNOR-mediated de-nitrosylation removes excess NO toxicity during appressorium formation to promote infection. Through an indoTMT switch labeling proteomics technique, 741 S-nitrosylation sites in 483 proteins are identified. Key appressorial proteins, such as Mgb1, MagB, Sps1, Cdc42, and septins, are activated by GSNOR through de-nitrosylation. Removing S-nitrosylation sites of above proteins is essential for proper protein structure and appressorial function. Therefore, GSNOR-mediated de-nitrosylation is an essential regulator for appressorium formation. It is also shown that breaking NO homeostasis by NO donors, NO scavengers, as well as chemical inhibitor of GSNOR, shall be effective methods for fungal disease control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Biography
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在阿尔茨海默病(AD)中,线粒体代谢异常与突触丢失有关,认知功能下降的主要病理相关因素。对这种关系的机械洞察力,然而,仍然缺乏。这里,比较等基因野生型和AD突变体人类诱导多能干细胞(hiPSC)来源的大脑皮层神经元(hiN),使用海马平台分析糖酵解和氧化磷酸化(OXPHOS),发现AD中线粒体能量受损的证据。同位素标记的代谢通量实验显示,在α-酮戊二酸脱氢酶(αKGDH)/琥珀酰辅酶A合成酶步骤中,三羧酸(TCA)循环的活性存在主要障碍,代谢α-酮戊二酸为琥珀酸。与此块关联,αKGDH亚基的异常蛋白S-亚硝基化抑制了它们的酶功能。这种异常的S-亚硝基化不仅在AD-hiN中而且在死后的人类AD大脑与对照中都有记录。通过两个单独的无偏质谱平台评估,使用SNOTRAP鉴定S-亚硝基硫醇和化学选择性富集S-亚硝基蛋白质。用琥珀酸二甲酯处理,块下游的TCA底物的细胞可渗透衍生物,导致线粒体生物能量功能的部分挽救以及AD-hiN中突触丢失的逆转。这些发现具有治疗意义,即在基于hiPSC的AD模型中,线粒体能量代谢的挽救可以改善突触损失。
    In Alzheimer\'s disease (AD), dysfunctional mitochondrial metabolism is associated with synaptic loss, the major pathological correlate of cognitive decline. Mechanistic insight for this relationship, however, is still lacking. Here, comparing isogenic wild-type and AD mutant human induced pluripotent stem cell (hiPSC)-derived cerebrocortical neurons (hiN), evidence is found for compromised mitochondrial energy in AD using the Seahorse platform to analyze glycolysis and oxidative phosphorylation (OXPHOS). Isotope-labeled metabolic flux experiments revealed a major block in activity in the tricarboxylic acid (TCA) cycle at the α-ketoglutarate dehydrogenase (αKGDH)/succinyl coenzyme-A synthetase step, metabolizing α-ketoglutarate to succinate. Associated with this block, aberrant protein S-nitrosylation of αKGDH subunits inhibited their enzyme function. This aberrant S-nitrosylation is documented not only in AD-hiN but also in postmortem human AD brains versus controls, as assessed by two separate unbiased mass spectrometry platforms using both SNOTRAP identification of S-nitrosothiols and chemoselective-enrichment of S-nitrosoproteins. Treatment with dimethyl succinate, a cell-permeable derivative of a TCA substrate downstream to the block, resulted in partial rescue of mitochondrial bioenergetic function as well as reversal of synapse loss in AD-hiN. These findings have therapeutic implications that rescue of mitochondrial energy metabolism can ameliorate synaptic loss in hiPSC-based models of AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景子痫前期,孕产妇和胎儿死亡率和发病率的主要原因,其特征是S-亚硝基化蛋白和活性氧的增加,提示在亚硝化和亚硝化应激中失调的病理生理作用。方法和结果,我们显示缺乏S-亚硝基谷胱甘肽还原酶(GSNOR-06-)的小鼠,一种调节蛋白S-亚硝基化的脱硝基酶,表现出先兆子痫表型,包括高血压,蛋白尿,肾脏病理学,心脏同心肥大,胎盘血管化减少,和胎儿生长迟缓.活性氧,NO,过氧亚硝酸盐水平升高。重要的是,质谱显示GSNOR-276-小鼠中胎盘S-亚硝基化氨基酸残基升高。除胎儿体重外,抗坏血酸逆转了表型,减少了S-亚硝基蛋白质组的差异,并在GSNOR-246-小鼠中鉴定出一组独特的S-亚硝基化蛋白。重要的是,人类先兆子痫胎盘表现出降低的GSNOR活性和增加的亚硝基应激。因此,结论,GSNOR的缺乏在小鼠中造成胎盘S-亚硝基化和先兆子痫的失调,可以用抗坏血酸来拯救。再加上在人类胎盘中的类似发现,这些发现为子痫前期提供了有价值的见解和治疗意义.
    Background Preeclampsia, a leading cause of maternal and fetal mortality and morbidity, is characterized by an increase in S-nitrosylated proteins and reactive oxygen species, suggesting a pathophysiologic role for dysregulation in nitrosylation and nitrosative stress. Methods and Results Here, we show that mice lacking S-nitrosoglutathione reductase (GSNOR-⁄-), a denitrosylase regulating protein S-nitrosylation, exhibit a preeclampsia phenotype, including hypertension, proteinuria, renal pathology, cardiac concentric hypertrophy, decreased placental vascularization, and fetal growth retardation. Reactive oxygen species, NO, and peroxynitrite levels are elevated. Importantly, mass spectrometry reveals elevated placental S-nitrosylated amino acid residues in GSNOR-⁄- mice. Ascorbate reverses the phenotype except for fetal weight, reduces the difference in the S-nitrosoproteome, and identifies a unique set of S-nitrosylated proteins in GSNOR-⁄- mice. Importantly, human preeclamptic placentas exhibit decreased GSNOR activity and increased nitrosative stress. Conclusions Therefore, deficiency of GSNOR creates dysregulation of placental S-nitrosylation and preeclampsia in mice, which can be rescued by ascorbate. Coupled with similar findings in human placentas, these findings offer valuable insights and therapeutic implications for preeclampsia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一氧化氮(NO)是植物和动物中的信号分子。拟南芥GSNO还原酶1(AtGSNOR1)催化S-亚硝基谷胱甘肽(GSNO)的代谢,GSNO是一种主要的生物活性NO物种。GSNOR1功能丧失突变体gsnor1-3以固有的高S-亚硝基化水平和对氧化应激诱导剂百草枯(1,1'-二甲基-4,4'-联吡啶二氯化物)的抗性过度积累GSNO。这里,我们报道了dgl1-3作为gsnor1-3的遗传抑制因子的特征。DGL1编码寡糖转移(OST)复合物的亚基,其在N-糖基化中催化N-糖苷键的形成。dgl1-3抑制gsnor1-3的百草枯抗性,同时gsnor1-3挽救了dgl1-3的胚胎致死性和胚胎后发育缺陷,这一事实提醒我们S-亚硝基化和N-糖基化通过共底物相互串扰的可能性。通过富集gsnor1-3和质谱分析中的糖蛋白,TGG2(硫代葡萄糖苷葡萄糖氢化酶2)被鉴定为在gsnor1-3ost3/6中具有高降解速率和升高的N-糖基化水平的共底物之一。在dgl1-3和gsnor1-3中也修饰了S-亚硝基化和N-糖基化谱。因此,我们提出了通过共底物在S-亚硝基化和N-糖基化之间的连接。
    Nitric oxide (NO) is a signal molecule in plants and animals. Arabidopsis GSNO reductase1 (AtGSNOR1) catalyzes metabolism of S-nitrosoglutathione (GSNO) which is a major biologically active NO species. The GSNOR1 loss-of-function mutant gsnor1-3 overaccumulates GSNO with inherent high S-nitrosylation level and resistance to the oxidative stress inducer paraquat (1,1\'-dimethyl-4,4\'-bipyridinium dichloride). Here, we report the characterization of dgl1-3 as a genetic suppressor of gsnor1-3. DGL1 encodes a subunit of the oligosaccharyltransferse (OST) complex which catalyzes the formation of N-glycosidic bonds in N-glycosylation. The fact that dgl1-3 repressed the paraquat resistance of gsnor1-3 meanwhile gsnor1-3 rescued the embryo-lethal and post-embryonic development defect of dgl1-3 reminded us the possibility that S-nitrosylation and N-glycosylation crosstalk with each other through co-substrates. By enriching glycoproteins in gsnor1-3 and mass spectrometry analysis, TGG2 (thioglucoside glucohydrolase2) was identified as one of co-substrates with high degradation rate and elevated N-glycosylation level in gsnor1-3 ost3/6. The S-nitrosylation and N-glycosylation profiles were also modified in dgl1-3 and gsnor1-3. Thereby, we propose a linkage between S-nitrosylation and N-glycosylation through co-substrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:特发性扩张型心肌病是最常见的心肌病类型之一。有人提出,心力衰竭中氧化应激的增加导致一氧化氮信号的减少,导致亚硝基氧化还原信号受损。为了检验这个假设,我们调查了来自外植扩张型心肌病和未衰竭供体男性和女性人类心脏的活检中蛋白质S-亚硝基化(SNO)和氧化的发生情况.
    结果:氧化还原基树脂辅助捕获,用于氧化和SNO蛋白质组学分析,用于测量蛋白质氧化和SNO,分别。此外,使用马来酰亚胺巯基反应性荧光剂的二维差异凝胶电泳用于鉴定SNO蛋白。与健康供体相比,扩张型心肌病活检组织中的蛋白质氧化增加。有趣的是,在衰竭的心脏中,我们没有发现SNO持续下降;我们发现一些蛋白质显示SNO增加,而另一些则显示减少,反应存在性别差异。在女性心脏衰竭中,我们发现了10种SNO显着减少的蛋白质和4种SNO增加的蛋白质。比较未衰竭和衰竭的男性心脏,我们发现9种蛋白质显着减少,12种蛋白质显着增加。我们还发现,在衰竭的女性和男性心脏中,内皮一氧化氮合酶的S-谷胱甘肽化增加,表明女性心脏中的非偶联一氧化氮合酶增加。
    结论:这些发现强调了亚硝基氧化还原信号在生理和病理条件下的重要性,提示治疗心力衰竭的潜在目标。
    BACKGROUND: Idiopathic dilated cardiomyopathy is one of the most common types of cardiomyopathy. It has been proposed that an increase in oxidative stress in heart failure leads to a decrease in nitric oxide signaling, leading to impaired nitroso-redox signaling. To test this hypothesis, we investigated the occurrence of protein S-nitrosylation (SNO) and oxidation in biopsies from explanted dilated cardiomyopathy and nonfailing donor male and female human hearts.
    RESULTS: Redox-based resin-assisted capture for oxidation and SNO proteomic analysis was used to measure protein oxidation and SNO, respectively. In addition, 2-dimensional difference gel electrophoresis using maleimide sulfhydryl-reactive fluors was used to identify the SNO proteins. Protein oxidation increased in dilated cardiomyopathy biopsies in comparison with those from healthy donors. Interestingly, we did not find a consistent decrease in SNO in failing hearts; we found that some proteins showed an increase in SNO and others showed a decrease, and there were sex-specific differences in the response. We found 10 proteins with a significant decrease in SNO and 4 proteins with an increase in SNO in failing female hearts. Comparing nonfailing and failing male hearts, we found 9 proteins with a significant decrease and 12 proteins with a significant increase. We also found an increase in S-glutathionylation of endothelial nitric oxide synthase in failing female versus male hearts, suggesting an increase in uncoupled nitric oxide synthase in female hearts.
    CONCLUSIONS: These findings highlight the importance of nitroso-redox signaling in both physiological and pathological conditions, suggesting a potential target to treat heart failure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号