RraA

RraA
  • 文章类型: Journal Article
    细菌核糖核酸酶E(RNaseE)通过降解和加工RNA对转录后调控至关重要。RraA蛋白通过蛋白质-蛋白质相互作用抑制RNaseE活性,对基因表达发挥整体调节作用。然而,RraA的具体作用尚不清楚.在这项研究中,我们研究了rraA在溶藻弧菌ZJ-T中的表达,并鉴定了三个负责其表达的启动子,产生具有不同5'-UTR长度的转录本。在静止阶段,rraA在转录后被显著抑制。rraA的缺失对含盐的丰富培养基Luria-Bertani肉汤(LBS)中的细菌生长没有影响,但导致生物膜形成减少和对多粘菌素B的抗性增加。转录组分析显示,野生型和rraA突变体之间有350个差异表达基因(DEG),而蛋白质组分析鉴定出267种差异表达蛋白(DEP)。整合分析确定了DEGs和DEP共有的55个基因,这表明RraA主要在转录后水平影响基因表达。KEGG(京都基因和基因组百科全书)分析表明,RraA促进脂肪酸的转化,丙酸,和支链氨基酸乙酰辅酶A,同时增强氨基酸和肽的摄取。值得注意的是,RraA正调控毒力相关基因的表达,包括参与生物膜形成和VI型分泌系统的那些。本研究通过转录组分析扩展了对RraA调控网络的理解,强调蛋白质组学分析在研究转录后调控中的重要性。IMPORTANCERraA是核糖核酸酶E的抑制剂蛋白,与核酸内切酶相互作用并抑制其核酸内切活性,从而在多种mRNA和非编码小RNA的降解和成熟中起着广泛的调节作用。然而,RraA在溶藻弧菌中的生理功能和相关调节子尚未完全阐明。这里,我们报道RraA影响毒力相关的生理过程,即,抗生素耐药性和生物膜形成,在溶藻中。通过对转录组和蛋白质组进行综合分析,我们揭示了RraA参与碳代谢,氨基酸分解代谢,和运输,以及VI型分泌系统。总的来说,这些发现阐明了RraA对与溶藻弧菌代谢和发病机制相关的多种途径的调节作用.
    Bacterial ribonuclease E (RNase E) is vital for posttranscriptional regulation by degrading and processing RNA. The RraA protein inhibits RNase E activity through protein-protein interactions, exerting a global regulatory effect on gene expression. However, the specific role of RraA remains unclear. In this study, we investigated rraA expression in Vibrio alginolyticus ZJ-T and identified three promoters responsible for its expression, resulting in transcripts with varying 5\'-UTR lengths. During the stationary phase, rraA was significantly posttranscriptionally inhibited. Deletion of rraA had no impact on bacterial growth in rich medium Luria-Bertani broth with salt (LBS) but resulted in decreased biofilm formation and increased resistance to polymyxin B. Transcriptome analysis revealed 350 differentially expressed genes (DEGs) between the wild type and the rraA mutant, while proteome analysis identified 267 differentially expressed proteins (DEPs). Integrative analysis identified 55 genes common to both DEGs and DEPs, suggesting that RraA primarily affects gene expression at the posttranscriptional level. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis demonstrated that RraA facilitates the conversion of fatty acids, propionic acid, and branched-chain amino acids to acetyl-CoA while enhancing amino acid and peptide uptake. Notably, RraA positively regulates the expression of virulence-associated genes, including those involved in biofilm formation and the type VI secretion system. This study expands the understanding of the regulatory network of RraA through transcriptome analysis, emphasizing the importance of proteomic analysis in investigating posttranscriptional regulation.IMPORTANCERraA is an inhibitor protein of ribonuclease E that interacts with and suppresses its endonucleolytic activity, thereby playing a widespread regulatory role in the degradation and maturation of diverse mRNAs and noncoding small RNAs. However, the physiological functions and associated regulon of RraA in Vibrio alginolyticus have not been fully elucidated. Here, we report that RraA impacts virulence-associated physiological processes, namely, antibiotic resistance and biofilm formation, in V. alginolyticus. By conducting an integrative analysis of both the transcriptome and proteome, we revealed the involvement of RraA in carbon metabolism, amino acid catabolism, and transport, as well as in the type VI secretion system. Collectively, these findings elucidate the regulatory influence of RraA on multiple pathways associated with metabolism and pathogenesis in V. alginolyticus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大肠杆菌是用于生产重组膜蛋白(MPs)的最广泛使用的宿主之一。细菌MP生产,然而,通常伴有严重的毒性和低水平的体积积累。在以前的工作中,我们发现RraA的共表达,RNA酶E的RNA降解活性的抑制剂,可以有效地抑制与MP过表达过程相关的细胞毒性,同时,显着增强细菌中膜掺入的重组MPs的细胞积累。基于此,我们构建了专门的产生MP的大肠杆菌菌株SuppoxR,这可以显著提高折叠良好的重组MPs的体积产率。在目前的工作中,我们已经研究了大肠杆菌RNaseE中的结构域缺失,表现出降低的核糖核酸分解活性,可以导致抑制MP诱导的毒性和增强的重组MP生产,以类似于大肠杆菌SuppoxR中rraA过表达条件的方式。我们已经发现,一些编码特定RNaseE截短变体的菌株可以实现显著提高的重组MP产生水平。其中,我们发现了一个单独的RNaseE变异株,它可以有效地抑制MP诱导的毒性,并实现原核和真核来源蛋白质的重组MP生产水平的大大提高。基于它的属性,类似于最初的SuppoxR菌株,我们将该菌株称为SuppoxRNE22。大肠杆菌SuppoxRNE22可以比市售的细菌菌株表现更好,其经常用于重组MP生产。我们预计SuppoxRNE22将成为在细菌中广泛用于重组MP生产的宿主。
    Escherichia coli is one of the most widely utilized hosts for production of recombinant membrane proteins (MPs). Bacterial MP production, however, is usually accompanied by severe toxicity and low-level volumetric accumulation. In previous work, we had discovered that co-expression of RraA, an inhibitor of the RNA-degrading activity of RNase E, can efficiently suppress the cytotoxicity associated with the MP overexpression process and, simultaneously, enhance significantly the cellular accumulation of membrane-incorporated recombinant MPs in bacteria. Based on this, we constructed the specialized MP-producing E. coli strain SuptoxR, which can achieve dramatically enhanced volumetric yields of well-folded recombinant MPs. Ιn the present work, we have investigated whether domain deletions in the E. coli RNase E, which exhibit reduced ribonucleolytic activity, can result in suppressed MP-induced toxicity and enhanced recombinant MP production, in a manner resembling the conditions of rraA overexpression in E. coli SuptoxR. We have found that some strains encoding specific RNase E truncation variants can achieve significantly enhanced levels of recombinant MP production. Among these, we have found a single RNase E variant strain, which can efficiently suppress MP-induced toxicity and achieve greatly enhanced levels of recombinant MP production for proteins of both prokaryotic and eukaryotic origin. Based on its properties, and in analogy to the original SuptoxR strain, we have termed this strain SuptoxRNE22. E. coli SuptoxRNE22 can perform better than commercially available bacterial strains, which are frequently utilized for recombinant MP production. We anticipate that SuptoxRNE22 will become a widely utilized host for recombinant MP production in bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大肠杆菌是重组蛋白生产中应用最广泛的宿主之一,包括膜蛋白(MPs)。我们最近设计了一种专门的大肠杆菌菌株,用于增强重组MP的生产,称为SuppoxR。通过适当共表达效应基因rraA,SuppoxR可以抑制高毒性,这在MP过表达过程中经常观察到,and,同时,显着增强膜整合和正确折叠的重组MP的细胞积累。这两种有益效果的组合导致各种原核和真核MPs的体积产率显著提高。这里,我们设计了具有进一步改进特性的第二代SuppoxR菌株,这样他们就可以实现更高水平的重组MP生产。我们搜索了与原始SuppoxR菌株的天然大肠杆菌RraA具有相似或改善的MP毒性抑制和生产促进作用的天然存在的RraA变体。我们发现来自奇异变形杆菌和Providenciastuartii的RraA蛋白可以是比大肠杆菌RraA更有效的MP生产力增强剂。通过利用这两个新识别的RraAs,我们构建了两个第二代SuppoxR菌株,称为SuptoxR2.1和SuptoxR2.2,其MP生产能力通常显着超过原始SuptoxR。预期SuptoxR2.1和SuptoxR2.2成为用于在细菌中产生重组MP的广泛有用的表达宿主。
    Escherichia coli is one of the most widely utilized hosts for recombinant protein production, including that of membrane proteins (MPs). We have recently engineered a specialized E. coli strain for enhanced recombinant MP production, termed SuptoxR. By appropriately co-expressing the effector gene rraA, SuptoxR can suppress the high toxicity, which is frequently observed during the MP-overexpression process, and, at the same time, enhance significantly the cellular accumulation of membrane-incorporated and properly folded recombinant MP. The combination of these two beneficial effects results in dramatically enhanced volumetric yields for various prokaryotic and eukaryotic MPs. Here, we engineered second-generation SuptoxR strains with further improved properties, so that they can achieve even higher levels of recombinant MP production. We searched for naturally occurring RraA variants with similar or improved MP toxicity-suppressing and production-promoting effects to that of the native E. coli RraA of the original SuptoxR strain. We found that the RraA proteins from Proteus mirabilis and Providencia stuartii can be even more potent enhancers of MP productivity than the E. coli RraA. By exploiting these two newly identified RraAs, we constructed two second-generation SuptoxR strains, termed SuptoxR2.1 and SuptoxR2.2, whose MP-production capabilities often surpass those of the original SuptoxR significantly. SuptoxR2.1 and SuptoxR2.2 are expected to become widely useful expression hosts for recombinant MP production in bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Membrane proteins (MPs) execute a wide variety of critical biological functions in all living organisms and constitute approximately half of current targets for drug discovery. As in the case of soluble proteins, the bacterium Escherichia coli has served as a very popular overexpression host for biochemical/structural studies of membrane proteins as well. Bacterial recombinant membrane protein production, however, is typically hampered by poor cellular accumulation and severe toxicity for the host, which leads to low levels of final biomass and minute volumetric yields. In previous work, we generated the engineered E. coli strains SuptoxD and SuptoxR, which upon coexpression of the effector genes djlA or rraA, respectively, can suppress the cytotoxicity caused by MP overexpression and produce enhanced MP yields. Here, we systematically looked for gene overexpression and culturing conditions that maximize the accumulation of membrane-integrated and well-folded recombinant MPs in these strains. We have found that, under optimal conditions, SuptoxD and SuptoxR achieve greatly enhanced recombinant production for a variety of MP, irrespective of their archaeal, eubacterial, or eukaryotic origin. Furthermore, we demonstrate that the use of these engineered strains enables the production of well-folded recombinant MPs of high quality and at high yields, which are suitable for functional and structural studies. We anticipate that SuptoxD and SuptoxR will become broadly utilized expression hosts for recombinant MP production in bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    In previous work, we have generated the engineered Escherichia coli strains SuptoxD and SuptoxR, which upon co-expression of the effector genes djlA or rraA, respectively, are capable of suppressing the cytotoxicity caused by membrane protein (MP) overexpression and of producing dramatically enhanced yields for a variety of recombinant MPs of both prokaryotic and eukaryotic origin. Here, we investigated the functional requirements for DnaJ-like protein A (DjlA)- and regulator of ribonuclease activity A (RraA)-mediated enhancement of recombinant MP production in these strains and show that: (i) DjlA and RraA act independently, that is, the beneficial effects of each protein on recombinant MP production occur through a mechanism that does not involve the other, and in a non-additive manner; (ii) full-length and membrane-bound DjlA is required for exerting its beneficial effects on recombinant MP production in E. coli SuptoxD; (iii) the MP production-promoting properties of DjlA in SuptoxD involve the action of the molecular chaperone DnaK but do not rely on the activation of the regulation of capsular synthesis response, a well-established consequence of djlA overexpression; (iv) the observed RraA-mediated effects in E. coli SuptoxR involve the ribonucleolytic activity of RNase E, but not that of its paralogous ribonuclease RNase G; and (v) DjlA and RraA are unique among similar E. coli proteins in their ability to promote bacterial recombinant MP production. These observations provide important clues about the molecular requirements for suppressed toxicity and enhanced MP accumulation in SuptoxD/SuptoxR and will guide future studies aiming to decipher the exact mechanism of DjlA- and RraA-mediated enhancement of recombinant MP production in these strains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    RraA is a protein inhibitor of RNase E, which degrades and processes numerous RNAs in Escherichia coli. Streptomyces coelicolor also contains homologs of RNase E and RraA, RNase ES and RraAS1/RraAS2, respectively. Here, we report that, unlike other RraA homologs, RraAS1 directly interacts with the catalytic domain of RNase ES to exert its inhibitory effect. We further show that rraAS1 gene deletion in S. coelicolor results in a higher growth rate and increased production of actinorhodin and undecylprodigiosin, compared with the wild-type strain, suggesting that RraAS1-mediated regulation of RNase ES activity contributes to modulating the cellular physiology of S. coelicolor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Membrane proteins perform critical cellular functions in all living organisms and constitute major targets for drug discovery. Escherichia coli has been the most popular overexpression host for membrane protein biochemical/structural studies. Bacterial production of recombinant membrane proteins, however, is typically hampered by poor cellular accumulation and severe toxicity for the host, which leads to low final biomass and minute volumetric yields. In this work, we aimed to rewire the E. coli protein-producing machinery to withstand the toxicity caused by membrane protein overexpression in order to generate engineered bacterial strains with the ability to achieve high-level membrane protein production. To achieve this, we searched for bacterial genes whose coexpression can suppress membrane protein-induced toxicity and identified two highly potent effectors: the membrane-bound DnaK cochaperone DjlA, and the inhibitor of the mRNA-degrading activity of the E. coli RNase E, RraA. E. coli strains coexpressing either djlA or rraA, termed SuptoxD and SuptoxR, respectively, accumulated markedly higher levels of final biomass and produced dramatically enhanced yields for a variety of prokaryotic and eukaryotic recombinant membrane proteins. In all tested cases, either SuptoxD, or SuptoxR, or both, outperformed the capabilities of commercial strains frequently utilized for recombinant membrane protein production purposes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Members of the DEAD-box family of RNA helicases contribute to virtually every aspect of RNA metabolism, in organisms from all domains of life. Many of these helicases are constituents of multicomponent assemblies, and their interactions with partner proteins within the complexes underpin their activities and biological function. In Escherichia coli the DEAD-box helicase RhlB is a component of the multienzyme RNA degradosome assembly, and its interaction with the core ribonuclease RNase E boosts the ATP-dependent activity of the helicase. Earlier studies have identified the regulator of ribonuclease activity A (RraA) as a potential interaction partner of both RNase E and RhlB. We present structural and biochemical evidence showing how RraA can bind to, and modulate the activity of RhlB and another E. coli DEAD-box enzyme, SrmB. Crystallographic structures are presented of RraA in complex with a portion of the natively unstructured C-terminal tail of RhlB at 2.8-Å resolution, and in complex with the C-terminal RecA-like domain of SrmB at 2.9 Å. The models suggest two distinct mechanisms by which RraA might modulate the activity of these and potentially other helicases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号