Ribosomal DNA (rDNA)

核糖体 DNA (rDNA)
  • 文章类型: Journal Article
    在大多数真核细胞中,细胞核的形态大致为球形。然而,这种细胞器形状需要改变,因为细胞在细胞迁移过程中和在经历封闭有丝分裂的生物体的细胞分裂过程中,细胞穿过狭窄的细胞间隙。即,在不拆除核外壳的情况下,如酵母。此外,核形态通常在应激和病理条件下被改变,是癌症和衰老细胞的标志。因此,了解核形态动力学是最重要的,因为参与核形成的途径和蛋白质可以靶向抗癌,抗衰老,和抗真菌治疗。这里,我们回顾了酵母有丝分裂过程中核形状如何以及为什么会发生变化,引入新的数据将这些变化与核仁和液泡联系起来。总之,这些发现表明,细胞核的核仁结构域与自噬细胞器之间存在密切的关系,我们也在这里讨论。令人鼓舞的是,肿瘤细胞系的最新证据表明,核形态异常与溶酶体功能缺陷有关。
    The morphology of the nucleus is roughly spherical in most eukaryotic cells. However, this organelle shape needs to change as the cell travels through narrow intercellular spaces during cell migration and during cell division in organisms that undergo closed mitosis, i.e., without dismantling the nuclear envelope, such as yeast. In addition, the nuclear morphology is often modified under stress and in pathological conditions, being a hallmark of cancer and senescent cells. Thus, understanding nuclear morphological dynamics is of uttermost importance, as pathways and proteins involved in nuclear shaping can be targeted in anticancer, antiaging, and antifungal therapies. Here, we review how and why the nuclear shape changes during mitotic blocks in yeast, introducing novel data that associate these changes with both the nucleolus and the vacuole. Altogether, these findings suggest a close relationship between the nucleolar domain of the nucleus and the autophagic organelle, which we also discuss here. Encouragingly, recent evidence in tumor cell lines has linked aberrant nuclear morphology to defects in lysosomal function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结论:我们确定的全基因组结构变异和我们开发的新的NOR连锁标记将对未来的全基因组关联研究(GWAS)有用,并用于新的基因/性状定位。拟南芥Col-0和Sha生态型组装基因组的生物信息学比对揭示了约13,000个全基因组结构变体,涉及简单的插入或缺失以及重复的收缩或扩展。使用这些结构变体中的一些,我们开发了新的,快速,和低成本的基于PCR的分子标记,这些标记与核仁组织者区域(NORs)遗传连锁。A.thaliana有两个NOR,2号染色体(NOR2)和4号染色体(NOR4)各一个。两个NOR都是~4Mb,数百个45S核糖体RNA(rRNA)基因串联排列在这些基因座上。使用先前表征的来自ShaxCol-0杂交的重组自交系(RIL),我们验证了新开发的NOR连锁标记在将rRNA基因和相关端粒基因定位为NOR2或NOR4中的实用性.最后,我们使用牛津纳米孔技术(ONT)对Sha基因组进行测序,并使用数据获得NOR-端粒连接的序列,在RIL的帮助下,我们将它们作为新的遗传标记映射到各自的NORs(NOR2-TEL2N和NOR4-TEL4N)。从这项研究中获得的结构变体将作为全基因组关联研究(GWAS)的有价值的数据。并为新的基因/性状作图目的快速设计更多的全基因组遗传(分子)标记。
    CONCLUSIONS: Genome-wide structural variants we identified and new NOR-linked markers we developed would be useful for future genome-wide association studies (GWAS), and for new gene/trait mapping purposes. Bioinformatic alignment of the assembled genomes of Col-0 and Sha ecotypes of Arabidopsis thaliana revealed ~ 13,000 genome-wide structural variants involving simple insertions or deletions and repeat contractions or expansions. Using some of these structural variants, we developed new, rapid, and low-cost PCR-based molecular markers that are genetically linked to the nucleolus organizer regions (NORs). A. thaliana has two NORs, one each on chromosome 2 (NOR2) and chromosome 4 (NOR4). Both NORs are ~ 4 Mb each, and hundreds of 45S ribosomal RNA (rRNA) genes are tandemly arrayed at these loci. Using previously characterized recombinant inbred lines (RILs) derived from Sha x Col-0  crosses, we validated the utility of the newly developed NOR-linked markers in genetically mapping rRNA genes and the associated telomeres to either NOR2 or NOR4. Lastly, we sequenced Sha genome using Oxford Nanopore Technology (ONT) and used the data to obtain sequences of NOR-telomere junctions, and with the help of RILs, we mapped them as new genetic markers to their respective NORs (NOR2-TEL2N and NOR4-TEL4N). The structural variants obtained from this study would serve as valuable data for genome-wide association studies (GWAS), and to rapidly design more genome-wide genetic (molecular) markers for new gene/trait mapping purposes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    液泡和溶酶体是参与细胞质蛋白和细胞器降解的细胞器。芽殖酵母的液泡形态受裂变和融合的动态调节。液泡融合是在营养耗尽的条件下引起的,并通过雷帕霉素复合物1(TORC1)蛋白激酶靶的失活而介导。然而,目前尚不清楚液泡形态是否以及如何影响巨自噬和微自噬,这是由营养饥饿和TORC1失活引起的。这里,我们开发了一种控制出芽酵母液泡裂变的系统。液泡碎片促进微自噬,但不促进巨自噬。液泡碎片导致多个核-液泡连接。由液泡碎裂引起的多个液泡也改善了微核自噬(一部分细胞核的微自噬降解)。然而,液泡形态不影响核仁重塑,rDNA(rRNA基因)区域的缩合,或从核仁蛋白中分离核糖体DNA,这是由TORC1失活引起的。因此,本研究揭示了液泡/溶酶体形态对巨自噬和微自噬的影响。
    Vacuoles and lysosomes are organelles involved in the degradation of cytoplasmic proteins and organelles. Vacuolar morphology is dynamically regulated by fission and fusion in budding yeast. Vacuolar fusion is elicited in nutrient-depleted conditions and mediated by inactivation of target of rapamycin complex 1 (TORC1) protein kinase. However, it is unknown whether and how vacuolar morphology affects macroautophagy and microautophagy, which are induced by nutrient starvation and TORC1 inactivation. Here, we developed a system to control vacuolar fission in budding yeast. Vacuolar fragmentation promoted microautophagy but not macroautophagy. Vacuolar fragmentation caused multiple nucleus-vacuole junctions. Multiple vacuoles caused by vacuolar fragmentation also improved micronucleophagy (microautophagic degradation of a portion of the nucleus). However, vacuolar morphology did not impact nucleolar remodeling, condensation of the rDNA (rRNA gene) region, or separation of ribosomal DNA from nucleolar proteins, which is evoked by TORC1 inactivation. Thus, this study provides insights into the impacts of vacuolar/lysosomal morphology on macroautophagy and microautophagy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    当异步生长的细胞遭受营养消耗和雷帕霉素复合物1(TORC1)蛋白激酶靶的失活时,rDNA(rRNA基因)区域在出芽的酿酒酵母中浓缩,由凝集素和Cdc14蛋白磷酸酶执行。然而,尚不清楚这些有丝分裂因子是否可以在营养饥饿的间期细胞中浓缩rDNA区域。这里,我们表明凝缩素不参与TORC1失活诱导的G1细胞rDNA缩合。相反,高迁移率组蛋白Hmo1驱动了这一过程.抑制rRNA转录的组蛋白脱乙酰酶Rpd3和Cdc14,两者都是相间rDNA缩合所必需的。此外,相间rDNA缩合需要CLIP和cohibin将rDNA束缚到内部核膜。最后,我们发现Hmo1,CLIP,Rpd3和Cdc14是营养饥饿的G1细胞存活所必需的。因此,这项研究揭示了间期染色体凝聚的新特征。
    When asynchronously growing cells suffer from nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) protein kinase, the rDNA (rRNA gene) region is condensed in budding yeast Saccharomyces cerevisiae, which is executed by condensin and Cdc14 protein phosphatase. However, it is unknown whether these mitotic factors can condense the rDNA region in nutrient-starved interphase cells. Here, we show that condensin is not involved in TORC1 inactivation-induced rDNA condensation in G1 cells. Instead, the high-mobility group protein Hmo1 drove this process. The histone deacetylase Rpd3 and Cdc14, which repress rRNA transcription, were both required for the interphase rDNA condensation. Furthermore, interphase rDNA condensation necessitated CLIP and cohibin that tether rDNA to inner nuclear membranes. Finally, we showed that Hmo1, CLIP, Rpd3, and Cdc14 were required for survival in nutrient-starved G1 cells. Thus, this study disclosed novel features of interphase chromosome condensation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    该协议描述了针对两种超分辨率显微镜方法优化的有丝分裂染色体上的DNA探针的荧光原位杂交(FISH)-结构化照明显微镜(SIM)和受激发射消耗(STED)。它基于传统的DNAFISH方法,可以与免疫荧光标记(Immuno-FISH)结合使用。该技术先前使我们能够可视化人类顶心染色体之间的核糖体DNA连接,并提供有关连锁rDNA基因座的活动状态的信息。与传统的宽视场和共聚焦显微镜相比,SIM和STED数据的质量更多地取决于最佳的标本制备,荧光团的选择,和荧光标记的质量。该协议突出细节,使标本适合超分辨率显微镜和提示良好的成像实践。
    This protocol describes the fluorescence in situ hybridization (FISH) of DNA probes on mitotic chromosome spreads optimized for two super-resolution microscopy approaches-structured illumination microscopy (SIM) and stimulated emission depletion (STED). It is based on traditional DNA FISH methods that can be combined with immunofluorescence labeling (Immuno-FISH). This technique previously allowed us to visualize ribosomal DNA linkages between human acrocentric chromosomes and provided information about the activity status of linked rDNA loci. Compared to the conventional wide-field and confocal microscopy, the quality of SIM and STED data depends a lot more on the optimal specimen preparation, choice of fluorophores, and quality of the fluorescent labeling. This protocol highlights details that make specimens suitable for super-resolution microscopy and tips for good imaging practices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    普遍转录在真核生物中广泛存在,产生非编码RNA的大家庭。这种普遍转录是控制染色质状态和基因表达的调节途径中的关键角色。这里,我们描述了从称为UPStream起始转录本(UPS)的核糖体RNA基因启动子产生的长链非编码RNA。在酵母中,rDNA基因在至少两种不同的染色质状态下串联重复组织,转录并大量耗尽核小体(开放)或组装成规则的核小体阵列(封闭)。RNA聚合酶II从内源性rDNA基因产生UPS转录本最初被记录在对RNA聚合酶I的rRNA产生有缺陷的突变体中。我们在这里表明,UPS是在野生型细胞中从封闭的rDNA基因产生的,但隐藏在巨大的rRNA产生中。当在高温或进入/离开静止状态下改变rDNA染色质状态时,UPS水平增加。我们讨论了它们在调节rDNA染色质状态和rRNA产生中的作用。
    Pervasive transcription is widespread in eukaryotes, generating large families of non-coding RNAs. Such pervasive transcription is a key player in the regulatory pathways controlling chromatin state and gene expression. Here, we describe long non-coding RNAs generated from the ribosomal RNA gene promoter called UPStream-initiating transcripts (UPS). In yeast, rDNA genes are organized in tandem repeats in at least two different chromatin states, either transcribed and largely depleted of nucleosomes (open) or assembled in regular arrays of nucleosomes (closed). The production of UPS transcripts by RNA Polymerase II from endogenous rDNA genes was initially documented in mutants defective for rRNA production by RNA polymerase I. We show here that UPS are produced in wild-type cells from closed rDNA genes but are hidden within the enormous production of rRNA. UPS levels are increased when rDNA chromatin states are modified at high temperatures or entering/leaving quiescence. We discuss their role in the regulation of rDNA chromatin states and rRNA production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    尚不清楚来自多个染色体核仁组织者(NORs)的核糖体基因(rDNA)阵列如何在人核仁中分配。由于五个带有NOR的近端染色体p臂的共享DNA序列组成,对这种染色体组织范式的探索变得复杂。这里,我们设计了一种对个体NOR进行遗传操作的方法。rDNA重复序列的有效“无疤痕”基因组编辑是在单染色体细胞杂种中持有的“平衡”人类NOR上实现的。随后转移到人类细胞会引入“活性”NOR,从而产生易于识别的功能定制核糖体。我们发现核糖体生物发生完全发生在受限的区域内,束缚在较大的核仁内的单个NORs上。
    It is unknown how ribosomal gene (rDNA) arrays from multiple chromosomal nucleolar organizers (NORs) partition within human nucleoli. Exploration of this paradigm for chromosomal organization is complicated by the shared DNA sequence composition of five NOR-bearing acrocentric chromosome p-arms. Here, we devise a methodology for genetic manipulation of individual NORs. Efficient \"scarless\" genome editing of rDNA repeats is achieved on \"poised\" human NORs held within monochromosomal cell hybrids. Subsequent transfer to human cells introduces \"active\" NORs yielding readily discernible functional customized ribosomes. We reveal that ribosome biogenesis occurs entirely within constrained territories, tethered to individual NORs inside a larger nucleolus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    口腔鳞状细胞癌(OSCC)是全球头颈部癌症患者发病和死亡的主要原因。由于缺乏有效的治疗策略和高复发率,这种恶性疾病的治疗具有挑战性。本研究旨在研究靶向核糖体生物发生和蛋白质翻译的单一和双重方法治疗与核糖体DNA(rDNA)拷贝数变异(CNV)相关的OSCC的功效。这里,我们发现原发性OSCC肿瘤经常表现出45SrDNA拷贝数的部分丢失,并且对CX5461(RNA聚合酶I的选择性抑制剂)以及CX5461和INK128(mTORC1/2的有效抑制剂)的联合给药具有高度易感性.联合治疗显示出诱导细胞凋亡和活性氧(ROS)产生的有希望的协同作用,并抑制细胞生长和增殖。此外,INK128损害NHEJ-DNA修复途径以增强CX5461的抗肿瘤活性。在体内,协同治疗抑制了肿瘤的生长,并显著延长荷瘤小鼠的生存时间。此外,用单独化合物治疗和共同给药似乎降低了腹股沟淋巴结肿大的发生率。我们的研究支持CX5461和INK128的组合是一种新颖且有效的治疗策略,可以对抗这种癌症,并且45SrDNA可以作为预测这种共同治疗效果的有用指标。
    Oral squamous cell carcinoma (OSCC) is the major cause of morbidity and mortality in head and neck cancer patients worldwide. This malignant disease is challenging to treat because of the lack of effective curative strategies and the high incidence of recurrence. This study aimed to investigate the efficacy of a single and dual approach targeting ribosome biogenesis and protein translation to treat OSCC associated with the copy number variation (CNV) of ribosomal DNA (rDNA). Here, we found that primary OSCC tumors frequently exhibited a partial loss of 45S rDNA copy number and demonstrated a high susceptibility to CX5461 (a selective inhibitor of RNA polymerase I) and the coadministration of CX5461 and INK128 (a potent inhibitor of mTORC1/2). Combined treatment displayed the promising synergistic effects that induced cell apoptosis and reactive oxygen species (ROS) generation, and inhibited cell growth and proliferation. Moreover, INK128 compromised NHEJ-DNA repair pathway to reinforce the antitumor activity of CX5461. In vivo, the cotreatment synergistically suppressed tumor growth, triggered apoptosis and strikingly extended the survival time of tumor-bearing mice. Additionally, treatment with the individual compounds and coadministration appeared to reduce the incidence of enlarged inguinal lymph nodes. Our study supports that the combination of CX5461 and INK128 is a novel and efficacious therapeutic strategy that can combat this cancer and that 45S rDNA may serve as a useful indicator to predict the efficacy of this cotreatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    拟南芥的叶子从茎尖分生组织沿三个(近端-远端,前后轴,和内侧-外侧)轴,并形成平坦的对称结构。非对称LEAVES2(AS2),叶片前后轴分配的关键调节器,编码植物特异性核蛋白并直接抑制背轴决定基因ETTIN/AUXIN反应因子3(ETT/ARF3)。AS2如何充当关键监管机构,然而,还没有被证明,尽管它可能发挥表观遗传作用。这里,我们总结了目前对遗传的理解,分子,和AS2的细胞功能。AS2的一个特征性遗传特征是存在许多(约60个)修饰基因,其突变增强了as2的叶片异常。尽管参与多种细胞过程的蛋白质基因被称为修饰剂,最近很明显,许多修饰蛋白,例如NUCLEOLIN1(NUC1)和RNAHELICASE10(RH10),位于核仁中。包括核糖体蛋白的一些修饰物也是小亚基加工体(SSUP)的成员。此外,AS2形成部分与包括凝聚的失活45S核糖体RNA基因的色中心共定位的核仁体。AS2参与维持ETT/ARF3特定外显子的CpG甲基化。NUC1和RH10基因也参与维持CpG甲基化水平和抑制ETT/ARF3转录水平。AS2和核仁定位修饰剂可能共同抑制ETT/ARF3,以发育对称的扁平叶片。这些结果提高了核仁相关的表观遗传抑制系统对植物特有的发育基因起作用的可能性,并预测AS2可能是一种具有新功能的分子,而这不能用传统的转录因子概念来解释。
    Leaves of Arabidopsis develop from a shoot apical meristem grow along three (proximal-distal, adaxial-abaxial, and medial-lateral) axes and form a flat symmetric architecture. ASYMMETRIC LEAVES2 (AS2), a key regulator for leaf adaxial-abaxial partitioning, encodes a plant-specific nuclear protein and directly represses the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). How AS2 could act as a critical regulator, however, has yet to be demonstrated, although it might play an epigenetic role. Here, we summarize the current understandings of the genetic, molecular, and cellular functions of AS2. A characteristic genetic feature of AS2 is the presence of a number of (about 60) modifier genes, mutations of which enhance the leaf abnormalities of as2. Although genes for proteins that are involved in diverse cellular processes are known as modifiers, it has recently become clear that many modifier proteins, such as NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10), are localized in the nucleolus. Some modifiers including ribosomal proteins are also members of the small subunit processome (SSUP). In addition, AS2 forms perinucleolar bodies partially colocalizing with chromocenters that include the condensed inactive 45S ribosomal RNA genes. AS2 participates in maintaining CpG methylation in specific exons of ETT/ARF3. NUC1 and RH10 genes are also involved in maintaining the CpG methylation levels and repressing ETT/ARF3 transcript levels. AS2 and nucleolus-localizing modifiers might cooperatively repress ETT/ARF3 to develop symmetric flat leaves. These results raise the possibility of a nucleolus-related epigenetic repression system operating for developmental genes unique to plants and predict that AS2 could be a molecule with novel functions that cannot be explained by the conventional concept of transcription factors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    在真核生物中,核糖体DNA(rDNA)基因座的特征是由于其重复性质和促进DNA双链断裂和RNA:DNA杂交体形成的碱基组成而固有的基因组不稳定性。在酵母中,核糖体DNA不稳定性通过形成染色体外rDNA环(ERC)影响寿命,该环积累到衰老细胞中。在人类中,rDNA不稳定性在由DNA解旋酶功能障碍引起的各种预后综合征中一直有报道,但其在生理衰老和长寿中的作用仍有待阐明。在这里,我们提出rDNA不稳定性通过与细胞质DNA传感机制的相互作用导致先天免疫和炎症的激活。由于最近阐明了细胞质DNA在衰老细胞的促炎表型中的作用,我们假设rDNA衍生分子(即ERC和RNA:DNA杂交体)的积累可能通过促进炎症(即与人类老年综合征和年龄相关功能障碍发病相关的全身性促炎漂移)在衰老中起作用.
    Across eukaryotes, ribosomal DNA (rDNA) loci are characterized by intrinsic genomic instability due to their repetitive nature and their base composition that facilitate DNA double strand breaks and RNA:DNA hybrids formation. In the yeast, ribosomal DNA instability affects lifespan via the formation of extrachromosomal rDNA circles (ERC) that accrue into aged cells. In humans, rDNA instability has long been reported in a variety of progeric syndromes caused by the dysfunction of DNA helicases, but its role in physiological aging and longevity still needs to be clarified. Here we propose that rDNA instability leads to the activation of innate immunity and inflammation via the interaction with the cytoplasmic DNA sensing machinery. Owing to the recent clarified role of cytoplasmic DNA in the pro-inflammatory phenotype of senescent cells, we hypothesize that the accrual of rDNA derived molecules (i.e. ERC and RNA:DNA hybrids) may have a role in aging by contributing to inflammaging i.e. the systemic pro-inflammatory drift that associates with the onset of geriatric syndromes and age related dysfunctions in humans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号