Ribonucleoprotein

核糖核蛋白
  • 文章类型: Journal Article
    CRISPR-Cas9核糖核蛋白(RNP)在基因编辑中的应用在植物和动物中普遍使用,但其在细菌中的应用尚未见报道。在这项研究中,我们使用DNA单链结合蛋白(SSB)构建SSB/CRISPR-Cas9RNP编辑系统,用于细菌中upp基因的非同源重组和同源重组基因编辑.针对upp基因的RNP,随着SSB,被引入大肠杆菌的原生质体中,假单胞菌,和枯草芽孢杆菌.在含有5-氟尿嘧啶(5-FU)的平板上获得转化体,基因编辑效率(转化体相对于原生质体数量的百分比)为9.75%,5.02%,8.37%,分别,和测序分析证实100%非同源重组。当RNP,SSB,并将100个核苷酸的单链寡脱氧核苷酸(ssODN)供体引入这些细菌的原生质体中,获得的转化体编辑效率为45.11%,30.13%,和27.18%,分别,测序证实了upp基因的100%同源重组敲除。此外,介绍RNP,SSB,和含有四环素抗性基因(tetR-dsODN)的100个碱基对双链寡脱氧核苷酸(dsODN)供体在5-FU平板上产生转化体,编辑效率为35.94%,22.46%,和19.08%,分别,测序证实用tetR100%同源重组替换upp基因。这些结果表明,SSB/CRISPR-Cas9RNP系统可以有效地,简单地说,快速编辑细菌基因组而不需要质粒。这项研究首次报道了基于RNP的基因编辑在细菌中的应用。
    The application of CRISPR-Cas9 ribonucleoprotein (RNP) for gene editing is commonly used in plants and animals, but its application in bacteria has not been reported. In this study, we employed DNA single-strand binding protein (SSB) to construct an SSB/CRISPR-Cas9 RNP-editing system for non-homologous recombination and homologous recombination gene editing of the upp gene in bacteria. The RNP targeting the upp gene, along with SSB, was introduced into the protoplasts of Escherichia coli, Pseudomonas, and Bacillus subtilis. Transformants were obtained on plates containing 5-fluorouracil (5-FU) with gene editing efficiencies (percentage of transformants relative to the number of protoplasts) of 9.75 %, 5.02 %, and 8.37 %, respectively, and sequencing analysis confirmed 100 % non-homologous recombination. When RNP, SSB, and a 100-nucleotide single-stranded oligodeoxynucleotide (ssODN) donor were introduced into the protoplasts of these bacteria, transformants were obtained with editing efficiencies of 45.11 %, 30.13 %, and 27.18 %, respectively, and sequencing confirmed 100 % homologous recombination knockout of the upp gene. Additionally, introducing RNP, SSB, and a 100 base-pair double-stranded oligodeoxynucleotide (dsODN) donor containing a tetracycline resistance gene (tetR-dsODN) resulted in transformants on 5-FU plates with editing efficiencies of 35.94 %, 22.46 %, and 19.08 %, respectively, with sequencing confirming 100 % homologous recombination replacement of the upp gene with tetR. These results demonstrate that the SSB/CRISPR-Cas9 RNP system can efficiently, simply, and rapidly edit bacterial genomes without the need for plasmids. This study is the first to report the use of RNP-based gene editing in bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    下一代CRISPR/Cas基因编辑工具的发明,像基地和主要编辑,用于纠正导致疾病的基因变异,为患者体内使用创造了希望,从而导致更广泛的临床翻译。为了实现这种潜力,能够将基因编辑工具套件安全有效地运送到特定细胞群体或组织中的运载工具非常需要。这里,我们描述了包膜逆转录病毒衍生颗粒作为由Cas9衍生的编辑蛋白和单向导RNA组成的“现成工作”核糖核蛋白复合物的载体的发展。我们提出了使病毒适应细胞靶向蛋白质递送的论点,并描述了十年开发期后的状态。已经在原代细胞中显示出有效的编辑,包括T细胞和造血干细胞,在体内靶向的组织中,包括老鼠的视网膜,肝脏,和大脑。新的证据表明,工程病毒衍生的纳米颗粒可以容纳基础和主要编辑,并且似乎使发芽希望,这种颗粒可以进一步开发并大规模生产以用于治疗应用。
    The invention of next-generation CRISPR/Cas gene editing tools, like base and prime editing, for correction of gene variants causing disease, has created hope for in vivo use in patients leading to wider clinical translation. To realize this potential, delivery vehicles that can ferry gene editing tool kits safely and effectively into specific cell populations or tissues are in great demand. In this review, we describe the development of enveloped retrovirus-derived particles as carriers of \"ready-to-work\" ribonucleoprotein complexes consisting of Cas9-derived editor proteins and single guide RNAs. We present arguments for adapting viruses for cell-targeted protein delivery and describe the status after a decade-long development period, which has already shown effective editing in primary cells, including T cells and hematopoietic stem cells, and in tissues targeted in vivo, including mouse retina, liver, and brain. Emerging evidence has demonstrated that engineered virus-derived nanoparticles can accommodate both base and prime editors and seems to fertilize a sprouting hope that such particles can be further developed and produced in large scale for therapeutic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在病毒感染期间,许多宿主蛋白从其正常的细胞作用被重定向到限制和终止感染。异质核核糖核蛋白(hnRNP)是对宿主核酸稳态至关重要的细胞RNA结合蛋白,但也可能参与病毒感染过程,影响病毒复制,组装和传播。hnRNPs在调节宿主先天性免疫中起着重要作用。它提供了针对感染的关键初始保护。这些新发现可能会导致hnRNPs在抗病毒治疗中的利用。我们回顾hnRNP参与抗病毒先天免疫,在人类中,老鼠和其他动物,并讨论hnRNP靶向作为一种潜在的新型抗病毒治疗。
    During virus infection, many host proteins are redirected from their normal cellular roles to restrict and terminate infection. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are cellular RNA-binding proteins critical to host nucleic acid homeostasis, but can also be involved in the viral infection process, affecting virus replication, assembly and propagation. It has become evident that hnRNPs play important roles in modulation of host innate immunity, which provides critical initial protection against infection. These novel findings can potentially lead to the leveraging of hnRNPs in antiviral therapies. We review hnRNP involvement in antiviral innate immunity, in humans, mice and other animals, and discuss hnRNP targeting as a potential novel antiviral therapeutic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转录后调控包括在DNA序列的初始拷贝转录成中间RNA分子(即,信使RNA),直到将此类分子用作生成蛋白质的模板。这些转录后调控机制的一个子集基本上注定要将未成熟的mRNA朝向其成熟形式进行处理,赋予足够的mRNA稳定性,提供相关内含子切除的手段,控制mRNA周转率和质量控制检查。在某些情况下增加了额外的复杂性层,由于成熟RNA分子中的离散核苷酸修饰是通过RNA编辑添加的,一个提供大量成熟mRNA多样性的过程。此外,许多转录后调控机制以细胞和组织特异性的方式发生,如选择性剪接和非编码RNA介导的调控。在这一章中,我们将简要总结目前的最新知识的一般转录后机制,而主要重点将致力于那些影响心脏发育和先天性心脏病的组织特异性转录后修饰。
    Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    成簇的规则间隔的短回文重复序列/CRISPR相关蛋白9(CRISPR/Cas9)已成为丝状真菌诱变的最新技术。这里,我们描述了核糖核蛋白复合物(RNP)介导的CRISPR/Cas9,用于在孢子孢子中诱变。用切割测定法在体外以及用表达GFP的S.reilianum菌株在体内测试该方法的效率。通过使用自动复制的质粒进行选择,我们应用此方法在没有抗性标记的情况下在S.reilianum中产生了移码和敲除突变体。RNP介导的CRISPR/Cas9增加了诱变效率,可以应用于各种突变,并允许在S.reilianum中进行无标记的基因组编辑。关键特征•CRISPR/Cas9在美国的首次应用。•在没有抗性标记的基因组整合的情况下产生S.reilianum突变体。•允许产生多个基因敲除以及大基因组区域的缺失。
    Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) has become the state of the art for mutagenesis in filamentous fungi. Here, we describe a ribonucleoprotein complex (RNP)-mediated CRISPR/Cas9 for mutagenesis in Sporisorium reilianum. The efficiency of the method was tested in vitro with a cleavage assay as well as in vivo with a GFP-expressing S. reilianum strain. We applied this method to generate frameshift- and knock-out mutants in S. reilianum without a resistance marker by using an auto-replicating plasmid for selection. The RNP-mediated CRISPR/Cas9 increased the mutagenesis efficiency, can be applied for all kinds of mutations, and enables a marker-free genome editing in S. reilianum. Key features • First CRISPR/Cas9 application in S. reilianum. • Generation of S. reilianum mutants without genomic integration of resistance marker. • Allows the generation of multiple gene knockouts as well as deletion of large genomic regions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于副作用的低风险,CRISPR/Cas9系统的非病毒递送为体内基因治疗提供了巨大的益处。然而,通过递送Cas9核糖核蛋白(RNP)进行的体内基因编辑由于向靶组织和细胞的递送不良而具有挑战性。这里,我们通过微调可电离脂质纳米颗粒的配方,为CRISPR/Cas9RNPs引入了一种有效的递送方法。已证明递送CRISPR/Cas9RNP(CrLNP)的LNP在体外各种癌细胞系中以高效率诱导基因编辑。此外,我们表明CrLNP可以高效地传递到肿瘤组织中,以及在体内诱导显著的基因编辑。目前的研究为CRISPR/Cas9系统的非病毒递送提供了一个有效的平台,该系统可用作体内基因编辑治疗剂,用于治疗各种疾病,如癌症和遗传疾病。
    Nonviral delivery of the CRISPR/Cas9 system provides great benefits for in vivo gene therapy due to the low risk of side effects. However, in vivo gene editing by delivering the Cas9 ribonucleoprotein (RNP) is challenging due to the poor delivery into target tissues and cells. Here, we introduce an effective delivery method for the CRISPR/Cas9 RNPs by finely tuning the formulation of ionizable lipid nanoparticles. The LNPs delivering CRISPR/Cas9 RNPs (CrLNPs) are demonstrated to induce gene editing with high efficiencies in various cancer cell lines in vitro. Furthermore, we show that CrLNPs can be delivered into tumor tissues with high efficiency, as well as induce significant gene editing in vivo. The current study presents an effective platform for nonviral delivery of the CRISPR/Cas9 system that can be applied as an in vivo gene editing therapeutic for treating various diseases such as cancer and genetic disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    异质核核糖核蛋白(hnRNP)是在RNA代谢和可变剪接调节中具有重要作用的多功能蛋白。这些蛋白质通常含有低复杂性的朊病毒样结构域(PrLD或LCD),其控制它们组装成功能性或病理性淀粉样原纤维。迄今为止,已经鉴定了超过60个针对hnRNPs的LCD的突变,这些突变与包括肌萎缩侧索硬化症(ALS)在内的一系列神经退行性疾病有关,额颞叶痴呆(FTD),和阿尔茨海默病(AD)。最近已经阐明了由不同hnRNPs形成的病理和功能性原纤维的冷冻-EM结构,包括hnRNPA1、hnRNPA2、hnRNPDL-2、TDP-43和FUS。在这次审查中,我们讨论了这些淀粉样蛋白组装体的结构特征,特别强调仔细检查其LCD中流行的疾病相关突变作图的影响。通过进行系统的能量计算,我们揭示了淀粉样蛋白结构中这些突变引起的不稳定效应的流行趋势,挑战传统上假定的致病性和淀粉样倾向之间的相关性。了解这种差异的分子基础可能为开发靶向治疗策略以对抗hnRNP相关疾病提供见解。
    Heterogeneous nuclear ribonucleoproteins (hnRNPs) are multifunctional proteins with integral roles in RNA metabolism and the regulation of alternative splicing. These proteins typically contain prion-like domains of low complexity (PrLDs or LCDs) that govern their assembly into either functional or pathological amyloid fibrils. To date, over 60 mutations targeting the LCDs of hnRNPs have been identified and associated with a spectrum of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer\'s disease (AD). The cryo-EM structures of pathological and functional fibrils formed by different hnRNPs have been recently elucidated, including those of hnRNPA1, hnRNPA2, hnRNPDL-2, TDP-43, and FUS. In this review, we discuss the structural features of these amyloid assemblies, placing particular emphasis on scrutinizing the impact of prevalent disease-associated mutations mapping within their LCDs. By performing systematic energy calculations, we reveal a prevailing trend of destabilizing effects induced by these mutations in the amyloid structure, challenging the traditionally assumed correlation between pathogenicity and amyloidogenic propensity. Understanding the molecular basis of this discrepancy might provide insights for developing targeted therapeutic strategies to combat hnRNP-associated diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鼠种系中的基因编辑是研究生殖细胞成熟和生成小鼠模型的有价值的方法。一些研究表明,CRISPR/Cas9改变了通过质粒的电穿孔递送的培养的雄性小鼠生殖系干细胞的基因组。最近,我们证明,通过脂质体转染Cas9:gRNA核糖核蛋白,基因敲除可以有效地靶向小鼠生殖系干细胞。在这个协议中,我们描述了一个简单的,快,以及通过在小鼠雄性生殖系干细胞中的非整合核糖核蛋白的脂质转染进行基因编辑的廉价工作流程。
    Gene editing in the murine germline is a valuable approach to investigate germ cell maturation and generate mouse models. Several studies demonstrated that CRISPR/Cas9 alters the genome of cultured male mouse germline stem cells delivered by electroporation of plasmids. Recently, we showed proof-of-principle that gene knockout can be effectively targeted in mouse germline stem cells by lipofecting Cas9:gRNA ribonucleoproteins. In this protocol, we describe a simple, fast, and cheap workflow for gene editing via the lipofection of non-integrative ribonucleoproteins in murine male germline stem cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    RNaseP和RNase线粒体RNA加工(MRP)是核糖核蛋白(RNP),由催化RNA和不同数量的蛋白质辅因子组成。RNaseP负责所有三个生命域中的前体tRNA成熟,而RNaseMRP,真核生物独有的,主要在rRNA生物发生中起作用。虽然真核RNaseP与更多的蛋白质辅因子相关,并且与细菌表亲相比,其RNA亚基具有更少的辅助结构元件,双锚前体tRNA识别机制在进化过程中得到了显著保留。RNaseMRP与RNaseP具有进化和结构相似性,将催化核心保留在从其共同祖先遗传的RNA部分内。通过整合新的蛋白质辅因子和RNA元件,RNaseMRP已经确立了自身作为能够处理ssRNA底物的独特RNP的地位。RNaseP和MRP的结构信息有助于建立进化轨迹,描绘了新兴的蛋白质辅因子如何与RNA的进化协调以塑造RNaseP和MRP的不同功能。这里,我们概述了RNaseP和MRP之间的结构和功能关系,以说明RNA和蛋白质辅因子的协同进化,现存的关键驱动程序,多样化的RNP世界。
    RNase P and RNase mitochondrial RNA processing (MRP) are ribonucleoproteins (RNPs) that consist of a catalytic RNA and a varying number of protein cofactors. RNase P is responsible for precursor tRNA maturation in all three domains of life, while RNase MRP, exclusive to eukaryotes, primarily functions in rRNA biogenesis. While eukaryotic RNase P is associated with more protein cofactors and has an RNA subunit with fewer auxiliary structural elements compared to its bacterial cousin, the double-anchor precursor tRNA recognition mechanism has remarkably been preserved during evolution. RNase MRP shares evolutionary and structural similarities with RNase P, preserving the catalytic core within the RNA moiety inherited from their common ancestor. By incorporating new protein cofactors and RNA elements, RNase MRP has established itself as a distinct RNP capable of processing ssRNA substrates. The structural information on RNase P and MRP helps build an evolutionary trajectory, depicting how emerging protein cofactors harmonize with the evolution of RNA to shape different functions for RNase P and MRP. Here, we outline the structural and functional relationship between RNase P and MRP to illustrate the coevolution of RNA and protein cofactors, a key driver for the extant, diverse RNP world.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号