Ribonuclease P

核糖核酸酶 P
  • 文章类型: Journal Article
    基于核酸的基因干扰和编辑策略,如反义寡核苷酸,核酶,RNA干扰(RNAi),和CRISPR/Cas9与引导RNA偶联,是令人兴奋的研究工具,并在治疗各种疾病的临床应用中显示出巨大的希望。RNaseP核酶已经被工程改造用于针对人类病毒例如人类巨细胞病毒(HCMV)的治疗应用。M1核酶,来自大肠杆菌的RNaseP的催化RNA亚基,可以转化为序列特异性核酸内切酶,M1GS核酶,能够水解与指导序列配对的mRNA靶碱基配对。M1GSRNA已显示水解必需的HCMVmRNA并阻断病毒感染的细胞培养物中的病毒后代产生。此外,通过采用体外选择程序可以产生具有增强的水解活性的RNaseP核酶变体,并且在抑制培养细胞中的HCMV基因表达和复制方面表现出更好的能力。另外的研究还检查了RNaseP核酶在小鼠体内的抗病毒活性。以巨细胞病毒感染为例,这篇综述总结了RNaseP核酶介导的基因失活的原理,介绍了工程RNaseP核酶在体外和小鼠中的应用的最新进展,并讨论了使用M1GS技术治疗HCMV以及其他致病病毒的前景。
    Nucleic acid-based gene interference and editing strategies, such as antisense oligonucleotides, ribozymes, RNA interference (RNAi), and CRISPR/Cas9 coupled with guide RNAs, are exciting research tools and show great promise for clinical applications in treating various illnesses. RNase P ribozymes have been engineered for therapeutic applications against human viruses such as human cytomegalovirus (HCMV). M1 ribozyme, the catalytic RNA subunit of RNase P from Escherichia coli, can be converted into a sequence-specific endonuclease, M1GS ribozyme, which is capable of hydrolyzing an mRNA target base-pairing with the guide sequence. M1GS RNAs have been shown to hydrolyze essential HCMV mRNAs and block viral progeny production in virus-infected cell cultures. Furthermore, RNase P ribozyme variants with enhanced hydrolyzing activity can be generated by employing in vitro selection procedures and exhibit better ability in suppressing HCMV gene expression and replication in cultured cells. Additional studies have also examined the antiviral activity of RNase P ribozymes in mice in vivo. Using cytomegalovirus infection as an example, this review summarizes the principles underlying RNase P ribozyme-mediated gene inactivation, presents recent progress in engineering RNase P ribozymes for applications in vitro and in mice, and discusses the prospects of using M1GS technology for therapeutic applications against HCMV as well as other pathogenic viruses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    描述了严重急性呼吸综合征相关冠状病毒2(SARS-CoV-2)的多重分子诊断测定,甲型(IAV)和乙型(IBV)流感病毒主要基于实时反应,这限制了他们进入许多实验室或诊断机构。有助于现有的策略和扩大获得鉴别诊断,我们描述了针对SARS-CoV-2,IAV和IBV的同时内源性对照扩增的终点多重RT-PCR。最初,我们寻找SARS-CoV-2,IAV,IBV和RNA酶P,其扩增子可以在琼脂糖凝胶上区分。然后通过优化反应混合物和循环条件将多重测定标准化。检测限(LoD)使用滴定的病毒(对于SARS-CoV-2和IAV)并通过从IBV阳性样品池中稀释来确定。通过测试具有不同RNA酶P和病毒载量的样品来评估多重诊断性能,先前鉴定为目标病毒阳性或阴性。IAV的扩增子(146bp),SARS-CoV-2(113bp),IBV(103bp)和RNA酶P(65bp)在我们的多重分析中得到了充分的区分。SARS-CoV-2、IAV和IBV的LoD为0.02TCID50/ml,0.07TCID50/ml和10-3来自阳性样品池,分别。所有样本均为SARS-CoV-2阳性(n=70,Ct17.2-36.9),在我们的多重测定中,IAV(n=53,Ct14-34.9)和IBV(n=12,Ct23.9-31.9)保持阳性。来自阴性样品(n=40,Ct25.2-30.2)的RNA酶P也在多重中扩增。总的来说,我们的检测是一种及时的替代工具,用于在供应/设备有限的实验室中检测SARS-CoV-2和流感病毒.
    The multiplex molecular diagnostic assays described for severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), influenza A (IAV) and B (IBV) viruses have been mainly based on real-time reaction, which limits their access to many laboratories or diagnostic institutions. To contribute to available strategies and expand access to differential diagnosis, we describe an end-point multiplex RT-PCR targeting SARS-CoV-2, IAV and IBV with simultaneous endogenous control amplification. Initially, we looked for well-established primers sets for SARS-CoV-2, IAV, IBV and RNAse P whose amplicons could be distinguished on agarose gel. The multiplex assay was then standardized by optimizing the reaction mix and cycle conditions. The limit of detection (LoD) was determined using titrated viruses (for SARS-CoV-2 and IAV) and by dilution from a pool of IBV-positive samples. The diagnostic performance of the multiplex was evaluated by testing samples with different RNAse P and viral loads, previously identified as positive or negative for the target viruses. The amplicons of IAV (146 bp), SARS-CoV-2 (113 bp), IBV (103 bp) and RNAse P (65 bp) were adequately distinguished in our multiplex. The LoD for SARS-CoV-2, IAV and IBV was 0.02 TCID50/ml, 0.07 TCID50/ml and 10-3 from a pool of positive samples, respectively. All samples positive for SARS-CoV-2 (n=70, Ct 17.2-36.9), IAV (n=53, Ct 14-34.9) and IBV (n=12, Ct 23.9-31.9) remained positive in our multiplex assay. RNAse P from negative samples (n=40, Ct 25.2-30.2) was also amplified in the multiplex. Overall, our assay is a timely and alternative tool for detecting SARS-CoV-2 and influenza viruses in laboratories with limited access to supplies/equipment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    停流荧光光谱法是一种用于测量快速酶动力学的高灵敏度方法。可以使用广泛的荧光团,可以测量荧光和荧光偏振。因此,绑定,构象变化,催化可以,原则上,被测量,使其有助于探测反应的整个动力学景观。在这一章中,我们使用细菌RNA加工酶核糖核酸酶P(RNaseP)作为模型系统来说明底物结合和裂解的动力学常数的测定,因此允许有关反应条件影响的机械问题,突变,或药物结合需要回答。
    Stopped-flow fluorescence spectroscopy is a highly sensitive method for measuring rapid enzyme kinetics. A wide range of fluorophores can be employed, and fluorescence and fluorescence polarization can be measured. Thus, binding, conformational changes, and catalysis can, in principle, be measured, making it helpful in probing the entire kinetic landscape of a reaction. In this chapter, we use the bacterial RNA processing enzyme ribonuclease P (RNase P) as a model system to illustrate the determination of the kinetic constants for substrate binding and cleavage, thus allowing mechanistic questions regarding the effects of reaction conditions, mutations, or drug binding to be answered.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从RNaseP催化RNA(M1RNA)工程化的核酶代表了临床应用的有前途的基因靶向剂。我们在本报告中描述了一种体外扩增和选择程序,用于产生具有提高的催化效率的活性RNaseP核酶变体。使用扩增和选择程序,我们以前已经产生了核酶变体,这些变体在体外切割单纯疱疹病毒1编码的mRNA并抑制其在病毒感染的人类细胞中的表达方面具有高活性。在这一章中,我们使用人巨细胞病毒(HCMV)的IE1和IE2蛋白的mRNA重叠区域作为靶底物。我们提供了详细的方案,并包括建立扩增和选择活性mRNA切割RNaseP核酶的程序的方法。体外扩增和选择系统代表了一种用于工程化可用于基础研究和临床应用的高活性RNaseP核酶的极好方法。
    Ribozymes engineered from the RNase P catalytic RNA (M1 RNA) represent promising gene-targeting agents for clinical applications. We describe in this report an in vitro amplification and selection procedure for generating active RNase P ribozyme variants with improved catalytic efficiency. Using the amplification and selection procedure, we have previously generated ribozyme variants that were highly active in cleaving a herpes simplex virus 1-encoded mRNA in vitro and inhibiting its expression in virally infected human cells. In this chapter, we use an overlapping region of the mRNAs for the IE1 and IE2 proteins of human cytomegalovirus (HCMV) as a target substrate. We provide detailed protocols and include methods for establishing the procedure for the amplification and selection of active mRNA-cleaving RNase P ribozymes. The in vitro amplification and selection system represents an excellent approach for engineering highly active RNase P ribozymes that can be used in both basic research and clinical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    核糖核酸酶P(RNaseP)在1970年代首次被描述为作用于前体转移RNA(tRNA)成熟的核糖核酸内切酶。最近的研究,然而,已经揭示了RNaseP及其组分的非规范作用。这里,我们回顾了其参与染色质组装的最新进展,DNA损伤反应,和维持基因组稳定性对肿瘤发生的影响。还讨论了RNaseP作为癌症治疗靶标的可能性。
    Ribonuclease P (RNase P) was first described in the 1970\'s as an endoribonuclease acting in the maturation of precursor transfer RNAs (tRNAs). More recent studies, however, have uncovered non-canonical roles for RNase P and its components. Here, we review the recent progress of its involvement in chromatin assembly, DNA damage response, and maintenance of genome stability with implications in tumorigenesis. The possibility of RNase P as a therapeutic target in cancer is also discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类线粒体基因组被转录成两个RNA,含有mRNA,rRNA和tRNA,都致力于产生呼吸链的必需蛋白质。线粒体核糖核酸内切酶(mt-RNase)对tRNA的精确切除,P和Z,从两个RNA转录物释放所有RNA种类。然后,tRNA经历3'-CCA添加。在后生动物线粒体中,RNaseP是包含核糖核酸内切酶PRORP和tRNA甲基转移酶亚复合物的多酶组件。这种tRNA甲基转移酶亚复合物对mt-RNaseP切割活性的要求,以及pre-tRNA3'-裂解和3'-CCA添加的机制,仍然知之甚少。这里,我们报告了冷冻-EM结构,可以看到线粒体tRNA成熟的四个步骤:5'和3'tRNA末端处理,甲基化和3'-CCA添加,并解释tRNA处理步骤的定义顺序。甲基转移酶亚复合物以独特的模式识别pre-tRNA,可以支持tRNA末端加工和3'-CCA添加,可能是由于线粒体tRNA成熟复合物对结构脆弱的线粒体tRNA的进化适应。该亚复合物还可以确保在成熟酶的顺序对接之前的tRNA折叠质量控制检查点。总之,我们的研究提供了详细的分子洞察RNA转录处理和人线粒体中的tRNA成熟。
    The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3\'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3\'-cleavage and 3\'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5\' and 3\' tRNA-end processing, methylation and 3\'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3\'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Historical Article
    JBC特刊向西德尼·奥特曼致敬,他发现了RNA的催化作用,托马斯·切赫独立取得的突破,推翻了长期以来的教条,即只有蛋白质才能在生物系统中充当催化剂。RNA催化的发现激发了生物学家在新方向上的广泛思考,并在科学和医学中产生了显着的RNA诞生。文章的收集始于发现RNaseP的故事,并建立了在生命的三个领域中出乎意料的大量RNaseP变体的新兴图景,包括从最近的高分辨率结构中得出的关于RNA如何,核糖核蛋白,或蛋白质支架可以可变地用于产生催化相同RNA加工反应的活性位点。该系列文章以讨论最近发现的核酸内切酶(Argonautes,Cas),其与RNaseP的相似之处强调了在不同生物学环境中反复出现的主题。
    This special issue of JBC pays tribute to Sidney Altman, whose discovery of a catalytic role for RNA, a breakthrough made independently by Thomas Cech, overturned the long-held dogma that only proteins can serve as catalysts in biological systems. The discovery of RNA catalysis galvanized biologists to think expansively in new directions and has given rise to a remarkable RNAissance in science and medicine. The collection of articles begins with the story of the discovery of RNase P and builds up to the emerging picture of an unexpectedly vast repertoire of RNase P variants in the three domains of life, including insights derived from recent high-resolution structures on how RNAs, ribonucleoproteins, or protein scaffolds can be used variably to generate an active site for catalyzing the same RNA processing reaction. The series of articles ends with a discussion of more recently discovered endonucleases (Argonautes, Cas), whose parallels with RNase P underscore recurring themes in diverse biological contexts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    与外部指导序列(EGS)复合的核糖核酸酶P(RNaseP)代表了一种有前途的基于核酸的基因靶向方法,用于基因表达敲低和调节。RNaseP-EGS策略是独特的,因为EGS可以被设计为对任何mRNA序列进行碱基配对并募集细胞内RNaseP以水解靶mRNA。在这项研究中,我们提供了第一个直接证据,表明基于RNaseP的方法有效地阻断了单纯疱疹病毒2(HSV-2)的基因表达和复制,生殖器疱疹的病原体。我们构建了EGSs以靶向编码HSV-2单链DNA结合蛋白ICP8的mRNA,该蛋白对于病毒DNA基因组复制和生长至关重要。在表达功能性EGS的HSV-2感染细胞中,ICP8水平降低了85%,病毒生长减少了3000倍。相反,ICP8表达和病毒生长在不表达EGS的细胞和表达具有排除RNaseP识别的突变的失活EGS的细胞之间没有实质性差异。抗ICP8EGS在靶向ICP8方面是特异性的,因为其仅影响ICP8表达,但不影响所检查的其它病毒立即早期和早期基因的表达。这项研究显示了RNaseP-EGS方法的有效和特异性抗HSV-2活性,并证明了EGSRNA用于抗HSV-2应用的潜力。
    Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a promising nucleic acid-based gene targeting approach for gene expression knock-down and modulation. The RNase P-EGS strategy is unique as an EGS can be designed to basepair any mRNA sequence and recruit intracellular RNase P for hydrolysis of the target mRNA. In this study, we provide the first direct evidence that the RNase P-based approach effectively blocks the gene expression and replication of herpes simplex virus 2 (HSV-2), the causative agent of genital herpes. We constructed EGSs to target the mRNA encoding HSV-2 single-stranded DNA binding protein ICP8, which is essential for viral DNA genome replication and growth. In HSV-2 infected cells expressing a functional EGS, ICP8 levels were reduced by 85%, and viral growth decreased by 3000 folds. On the contrary, ICP8 expression and viral growth exhibited no substantial differences between cells expressing no EGS and those expressing a disabled EGS with mutations precluding RNase P recognition. The anti-ICP8 EGS is specific in targeting ICP8 because it only affects ICP8 expression but does not affect the expression of the other viral immediate-early and early genes examined. This study shows the effective and specific anti-HSV-2 activity of the RNase P-EGS approach and demonstrates the potential of EGS RNAs for anti-HSV-2 applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNaseP是在生命的所有域中发现的必需酶,负责前体tRNA的5'-末端成熟。几十年来,许多研究试图阐明控制RNaseP功能的机制和生物化学。然而,关于RNaseP表达的调节仍然未知,酶的周转和降解,以及特定RNaseP突变的表型和互补机制,特别是在模型细菌中,大肠杆菌。在大肠杆菌中,RNaseP蛋白亚单位中的温度敏感性rnpA49突变可以说是体内检测酶活性研究最充分的突变之一。这里,我们首次报道了携带rnpA49等位基因的大肠杆菌菌株的自然发生的温度抗性抑制突变。我们发现rnpA49菌株可以通过RNaseP亚基(rnpA49或rnpB)的基因扩增或通过获得Lon蛋白酶或RNaseR中的功能丧失突变来部分补偿温度敏感性缺陷。我们的结果与以前的质粒过表达和基因缺失互补研究一致。重要的是表明Lon蛋白酶参与RNaseP的突变蛋白亚基的降解和/或调节途径。这项工作为rnpA49等位基因在体内的行为和互补提供了新的见解,并为后续研究提供了方向关于大肠杆菌中RNaseP的调节和周转。
    RNase P is an essential enzyme found across all domains of life that is responsible for the 5\'-end maturation of precursor tRNAs. For decades, numerous studies have sought to elucidate the mechanisms and biochemistry governing RNase P function. However, much remains unknown about the regulation of RNase P expression, the turnover and degradation of the enzyme, and the mechanisms underlying the phenotypes and complementation of specific RNase P mutations, especially in the model bacterium, Escherichia coli In E. coli, the temperature-sensitive (ts) rnpA49 mutation in the protein subunit of RNase P has arguably been one of the most well-studied mutations for examining the enzyme\'s activity in vivo. Here, we report for the first time naturally occurring temperature-resistant suppressor mutations of E. coli strains carrying the rnpA49 allele. We find that rnpA49 strains can partially compensate the ts defect via gene amplifications of either RNase P subunit (rnpA49 or rnpB) or by the acquisition of loss-of-function mutations in Lon protease or RNase R. Our results agree with previous plasmid overexpression and gene deletion complementation studies, and importantly suggest the involvement of Lon protease in the degradation and/or regulatory pathway(s) of the mutant protein subunit of RNase P. This work offers novel insights into the behavior and complementation of the rnpA49 allele in vivo and provides direction for follow-up studies regarding RNase P regulation and turnover in E. coli.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SidneyAltman发现一种RNA被另一种像酶一样的RNA加工,这在生物学上是革命性的,也是他与TomCech分享1989年诺贝尔化学奖的基础。这些突破性的发现支持了RNA在分子进化中的关键作用,在地球生命的早期阶段,复制RNA(和类似的化学衍生物)有或没有肽在原始细胞中起作用,一个被称为RNA世界的时代(1,2)。这里,我们涵盖了突出Altman和他的同事的工作的历史背景以及其他研究人员的后续努力,以了解RNaseP及其催化RNA亚基的生物学功能,并将其用作下调基因表达的工具。我们主要讨论细菌RNaseP相关研究,但承认许多小组对我们对古细菌和真核RNaseP的理解做出了重大贡献。如本期特刊和其他地方(3-7)所述。
    Sidney Altman\'s discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号