Retinal organoids (ROs)

视网膜类器官 ( RO )
  • 文章类型: Journal Article
    背景:X连锁幼年视网膜裂(XLRS)是一种由RS1基因突变引起的遗传性疾病,导致视网膜分裂和视力障碍.RS1相关视网膜变性的机制尚不完全清楚。此外,XLRS动物模型在XLRS研究中存在局限性。这里,我们使用人类诱导多能干细胞(hiPSC)衍生的视网膜类器官(ROs)来研究XLRS的疾病机制和潜在治疗方法.
    方法:从两个RS1突变体(E72K)XLRS患者的外周血单核细胞重编程的hiPSCs分化为ROs。随后,我们探讨RS1突变是否会影响RO发育,并探讨RS1基因增强治疗的有效性.
    结果:来自RS1(E72K)突变hiPSCs的RO在光感受器中表现出发育延迟,视网膜裂素(RS1)缺乏症,与对照RO相比,自发活动改变。此外,发育延迟与杆特异性前体标记(NRL)和光感受器特异性标记(RCVRN)表达降低相关.腺相关病毒(AAV)介导的RS1基因增强在光感受器未成熟阶段挽救了具有RS1(E72K)突变的RO中的杆状光感受器发育延迟。
    结论:RS1(E72K)突变导致ROs的光感受器发育延迟,RS1基因增强治疗可以部分挽救。
    BACKGROUND: X-linked juvenile retinoschisis (XLRS) is an inherited disease caused by RS1 gene mutation, which leads to retinal splitting and visual impairment. The mechanism of RS1-associated retinal degeneration is not fully understood. Besides, animal models of XLRS have limitations in the study of XLRS. Here, we used human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) to investigate the disease mechanisms and potential treatments for XLRS.
    METHODS: hiPSCs reprogrammed from peripheral blood mononuclear cells of two RS1 mutant (E72K) XLRS patients were differentiated into ROs. Subsequently, we explored whether RS1 mutation could affect RO development and explore the effectiveness of RS1 gene augmentation therapy.
    RESULTS: ROs derived from RS1 (E72K) mutation hiPSCs exhibited a developmental delay in the photoreceptor, retinoschisin (RS1) deficiency, and altered spontaneous activity compared with control ROs. Furthermore, the delays in development were associated with decreased expression of rod-specific precursor markers (NRL) and photoreceptor-specific markers (RCVRN). Adeno-associated virus (AAV)-mediated gene augmentation with RS1 at the photoreceptor immature stage rescued the rod photoreceptor developmental delay in ROs with the RS1 (E72K) mutation.
    CONCLUSIONS: The RS1 (E72K) mutation results in the photoreceptor development delay in ROs and can be partially rescued by the RS1 gene augmentation therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    人类胚胎干细胞(hESC)和诱导多能干细胞(hiPSC)衍生的视网膜类器官(RO)是三维层状结构,可概括人类视网膜的发育轨迹。RO为基础科学研究提供了一个迷人的工具,眼部疾病建模,治疗发展,和用于组织/细胞置换的生物样本。在这里,我们回顾了以前为RO技术铺平了道路的研究,最广泛接受的两个,生成RO的标准化协议,以及RO在医学发现中的应用。本文从基础科学研究的角度进行综述,再生医学移植,疾病建模,以及药物筛选和基因治疗的治疗开发。RO为组装等新技术开辟了道路,与其他类器官共培养,脉管系统或免疫细胞,微流体装置(芯片上的器官),用于药物递送的细胞外囊泡,生物材料工程,先进的成像技术,人工智能(AI)。然而,目前RO的一些缺点限制了它们在医学应用中的翻译,并对未来的研究提出了挑战。尽管有这些限制,RO是视网膜疾病功能研究和治疗策略的强大工具。
    Human embryonic stem cells (hESCs)- and induced pluripotent stem cells (hiPSCs)-derived retinal organoids (ROs) are three-dimensional laminar structures that recapitulate the developmental trajectory of the human retina. The ROs provide a fascinating tool for basic science research, eye disease modeling, treatment development, and biobanking for tissue/cell replacement. Here we review the previous studies that paved the way for RO technology, the two most widely accepted, standardized protocols to generate ROs, and the utilization of ROs in medical discovery. This review is conducted from the perspective of basic science research, transplantation for regenerative medicine, disease modeling, and therapeutic development for drug screening and gene therapy. ROs have opened avenues for new technologies such as assembloids, coculture with other organoids, vasculature or immune cells, microfluidic devices (organ-on-chip), extracellular vesicles for drug delivery, biomaterial engineering, advanced imaging techniques, and artificial intelligence (AI). Nevertheless, some shortcomings of ROs currently limit their translation for medical applications and pose a challenge for future research. Despite these limitations, ROs are a powerful tool for functional studies and therapeutic strategies for retinal diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号