Respiratory Center

呼吸中心
  • 文章类型: Journal Article
    μ-阿片类药物受体(MORs)负责介导阿片类药物的镇痛和呼吸作用。通过与控制呼吸的脑干区域的MORs结合,阿片类药物产生呼吸抑制作用,其特征是缓慢和浅呼吸,在用药过量时可能导致心肺骤停和死亡。为了更好地了解阿片类药物引起的呼吸抑制的潜在机制,需要全面了解可能易受阿片类药物调节的区域和细胞亚群。使用原位杂交,我们测定了Oprm1(编码MORs的基因)mRNA与谷氨酸能(Vglut2)和神经激肽-1受体(Tacr1)mRNA在参与呼吸控制和调节的髓质和脑桥区域的分布和共表达.我们发现,>50%的细胞在preBötzinger复合物(preBötC)中表达Oprm1mRNA,孤束核(NTS),模糊核(NA),蓝斑(LC),Kölliker-Fuse核(KF),以及外侧和内侧臂旁核(LBPN和MPBN,分别)。在Tacr1mRNA表达细胞中,>50%的Oprm1mRNA在preBötC共表达,NTS,NA,Bötzinger复合体(BötC),LC,中缝马格核,KF,LPBN,MPBN,而在Vglut2mRNA表达细胞中,>50%的Oprm1mRNA在preBötC共表达,NTS,NA,BötC,LC,KF,LPBN,MPBN一起来看,我们的研究提供了Oprm1,Tacr1和Vglut2mRNA在控制和调节呼吸的脑干区域的分布和共表达的全面图谱,并将表达Tacr1和Vglut2mRNA的细胞鉴定为可能易受阿片类药物调节的亚群.
    µ-Opioid receptors (MORs) are responsible for mediating both the analgesic and respiratory effects of opioid drugs. By binding to MORs in brainstem regions involved in controlling breathing, opioids produce respiratory depressive effects characterized by slow and shallow breathing, with potential cardiorespiratory arrest and death during overdose. To better understand the mechanisms underlying opioid-induced respiratory depression, thorough knowledge of the regions and cellular subpopulations that may be vulnerable to modulation by opioid drugs is needed. Using in situ hybridization, we determined the distribution and coexpression of Oprm1 (gene encoding MORs) mRNA with glutamatergic (Vglut2) and neurokinin-1 receptor (Tacr1) mRNA in medullary and pontine regions involved in breathing control and modulation. We found that >50% of cells expressed Oprm1 mRNA in the preBötzinger complex (preBötC), nucleus tractus solitarius (NTS), nucleus ambiguus (NA), postinspiratory complex (PiCo), locus coeruleus (LC), Kölliker-Fuse nucleus (KF), and the lateral and medial parabrachial nuclei (LBPN and MPBN, respectively). Among Tacr1 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, Bötzinger complex (BötC), PiCo, LC, raphe magnus nucleus, KF, LPBN, and MPBN, whereas among Vglut2 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, BötC, PiCo, LC, KF, LPBN, and MPBN. Taken together, our study provides a comprehensive map of the distribution and coexpression of Oprm1, Tacr1, and Vglut2 mRNA in brainstem regions that control and modulate breathing and identifies Tacr1 and Vglut2 mRNA-expressing cells as subpopulations with potential vulnerability to modulation by opioid drugs.NEW & NOTEWORTHY Opioid drugs can cause serious respiratory side-effects by binding to µ-opioid receptors (MORs) in brainstem regions that control breathing. To better understand the regions and their cellular subpopulations that may be vulnerable to modulation by opioids, we provide a comprehensive map of Oprm1 (gene encoding MORs) mRNA expression throughout brainstem regions that control and modulate breathing. Notably, we identify glutamatergic and neurokinin-1 receptor-expressing cells as potentially vulnerable to modulation by opioid drugs and worthy of further investigation using targeted approaches.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    嵌入哺乳动物神经回路内的抑制性神经元形状呼吸,走路,和其他有节奏的运动行为。控制呼吸的神经回路的核心是preBötzinger复合物(preBötC),其中GABA能(GAD1/2)和甘氨酸能(GlyT2)神经元在功能上和解剖学上插入谷氨酸能Dbx1衍生(Dbx1)神经元中,这些神经元产生节律性吸气驱动。这些preBötC抑制性神经元在呼吸中的作用尚不清楚。我们首先表征了在GlyT2中表达tdTomato或EGFP的雄性和雌性新生儿双报告小鼠中分子定义的preBötC抑制亚群的空间分布,GAD1+,或GAD2+神经元。我们发现,大多数preBötC抑制性神经元同时表达GlyT2和GAD2,而更小的亚群也表达GAD1。为了确定这些亚群的功能作用,我们使用了全息光刺激,一种图案化的照明技术,在来自新生儿Dbx1td番茄的有节奏活动的髓质切片中;GlyT2EGFP和Dbx1td番茄;GAD1EGFP两种性别的双报告小鼠。内源性节律期间刺激4或8个preBötCGlyT2神经元以相位依赖性方式延长了爆发间期,并增加了通过刺激Dbx1神经元诱发爆发时爆发的潜伏期。相比之下,刺激4或8个preBötCGAD1+神经元不影响爆发间期或爆发起始潜伏期.相反,吸气爆发期间GAD1神经元的光激活延长了内源性和诱发爆发持续时间,并降低了诱发爆发幅度。我们得出的结论是,GlyT2/GAD2神经元通过延迟爆发开始来调节呼吸节律,而较小的GAD1亚群通过改变爆发持续时间和幅度来塑造吸气模式。重要性声明抑制对于控制有节奏的运动行为至关重要,比如呼吸,走路,和咀嚼。我们揭示了嵌入式preBötC抑制性微cir之间的功能差异,这些差异有助于控制呼吸运动程序中不同过程的激发-抑制平衡。我们开发了用于对组织中神经元的空间分布进行高通量分析的方法,以及通过将全息光刺激重要扩展到更紧密地模拟生理神经活动的模式序列来进行动态功能操作的方法。我们的研究挑战了目前对抑制在呼吸中的作用的理解,并提供了新的见解,即抑制神经元在控制呼吸的神经回路中的特定作用,适用于健康和疾病中的其他节律运动行为。
    Inhibitory neurons embedded within mammalian neural circuits shape breathing, walking, and other rhythmic motor behaviors. At the core of the neural circuit controlling breathing is the preBötzinger Complex (preBötC), where GABAergic (GAD1/2+) and glycinergic (GlyT2+) neurons are functionally and anatomically intercalated among glutamatergic Dbx1-derived (Dbx1+) neurons that generate rhythmic inspiratory drive. The roles of these preBötC inhibitory neurons in breathing remain unclear. We first characterized the spatial distribution of molecularly defined preBötC inhibitory subpopulations in male and female neonatal double reporter mice expressing either tdTomato or EGFP in GlyT2+, GAD1+, or GAD2+ neurons. We found that the majority of preBötC inhibitory neurons expressed both GlyT2 and GAD2 while a much smaller subpopulation also expressed GAD1. To determine the functional role of these subpopulations, we used holographic photostimulation, a patterned illumination technique, in rhythmically active medullary slices from neonatal Dbx1tdTomato;GlyT2EGFP and Dbx1tdTomato;GAD1EGFP double reporter mice of either sex. Stimulation of 4 or 8 preBötC GlyT2+ neurons during endogenous rhythm prolonged the interburst interval in a phase-dependent manner and increased the latency to burst initiation when bursts were evoked by stimulation of Dbx1+ neurons. In contrast, stimulation of 4 or 8 preBötC GAD1+ neurons did not affect interburst interval or latency to burst initiation. Instead, photoactivation of GAD1+ neurons during the inspiratory burst prolonged endogenous and evoked burst duration and decreased evoked burst amplitude. We conclude that GlyT2+/GAD2+ neurons modulate breathing rhythm by delaying burst initiation while a smaller GAD1+ subpopulation shapes inspiratory patterning by altering burst duration and amplitude.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    preBötzinger复合体(preBötC)如何产生呼吸仍然分为两个意识形态框架,持续的钠电流(INaP)是这场辩论的核心。尽管INaP被广泛表达,起搏器假说认为它是必要的,因为它赋予一小部分神经元内在爆发或"起搏器"活动.相比之下,Burstlet理论认为INaP是可有可无的,因为节律是由前馈网络相互作用驱动的“吸气前”尖峰活动产生的。使用计算建模,我们发现穗形的微小变化可以使INaP与内在爆裂分离。与许多实验基准一致,在模拟氧合变化过程中对尖峰形状的条件效应,发展,细胞外钾,温度会改变内在爆裂和吸气前尖峰的患病率,而不会改变INaP的作用。我们的结果支持一个统一的假设,即INaP和兴奋性网络相互作用,但不是内在的爆发或吸气前的尖峰,是preBötC节律发生的关键相互依存特征。
    How breathing is generated by the preBötzinger complex (preBötC) remains divided between two ideological frameworks, and a persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or \"pacemaker\" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from \"preinspiratory\" spiking activity driven by feed-forward network interactions. Using computational modeling, we find that small changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and preinspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or preinspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在哺乳动物中,腹侧呼吸柱(VRC)在整合来自脑干和前脑区域的神经化学差异输入以产生呼吸运动模式中起关键作用.据报道,VRC微量注射神经肽甘丙肽可以抑制二氧化碳(CO2)介导的化学反射反应。此外,我们先前证明,后梯形核(RTN)中的加兰碱能神经元与对高碳酸血症刺激的适应性反应有关,表明RTN神经可塑性和增加的神经元驱动VRC之间的联系。VRC神经元表达甘丙肽受体1,表明甘丙肽的潜在调节作用,然而,精确的galaninine能化学感受器-VRC电路仍有待确定。这项研究旨在确定VRC的加兰碱能输入的来源,这些来源有助于中枢呼吸化学接受。我们采用了逆行神经元追踪的组合,原位杂交和免疫组织化学研究合成甘丙肽mRNA的VRC投射神经元。在另外一系列的实验中,我们使用急性高碳酸血症暴露(10%CO2,1小时)和c-Fos免疫组织化学来确定哪些向VRC投射的加兰宁能核被激活。我们的研究结果表明,共有30个脑核和51个亚核投射到VRC,其中12个含有加兰尼能神经元,包括RTN。在这些加兰尼能人群中,只有一部分RTN神经元(约55%)对急性高碳酸血症表现出激活。我们的发现强调,RTN是响应高碳酸血症刺激而向VRC传递galaninine能的可能来源。
    In mammals, the ventral respiratory column (VRC) plays a pivotal role in integrating neurochemically diverse inputs from brainstem and forebrain regions to generate respiratory motor patterns. VRC microinjection of the neuropeptide galanin has been reported to dampen carbon dioxide (CO2)-mediated chemoreflex responses. Additionally, we previously demonstrated that galaninergic neurons in the retrotrapezoid nucleus (RTN) are implicated in the adaptive response to hypercapnic stimuli, suggesting a link between RTN neuroplasticity and increased neuronal drive to the VRC. VRC neurons express galanin receptor 1, suggesting potential regulatory action by galanin, however, the precise galaninergic chemoreceptor-VRC circuitry remains to be determined. This study aimed to identify sources of galaninergic input to the VRC that contribute to central respiratory chemoreception. We employed a combination of retrograde neuronal tracing, in situ hybridisation and immunohistochemistry to investigate VRC-projecting neurons that synthesise galanin mRNA. In an additional series of experiments, we used acute hypercapnia exposure (10% CO2, 1 h) and c-Fos immunohistochemistry to ascertain which galaninergic nuclei projecting to the VRC are activated. Our findings reveal that a total of 30 brain nuclei and 51 subnuclei project to the VRC, with 12 of these containing galaninergic neurons, including the RTN. Among these galaninergic populations, only a subset of the RTN neurons (approximately 55%) exhibited activation in response to acute hypercapnia. Our findings highlight that the RTN is the likely source of galaninergic transmission to the VRC in response to hypercapnic stimuli.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    呼吸行为涉及在秒的时间尺度上产生正常呼吸(eupnoea),并在分钟的数量级上产生叹息呼吸。两种节律都从一个脑干部位串联出现,但是单个细胞群是否以及如何产生两种不同的节律尚不清楚。我们认为,反复发生的突触兴奋与突触抑制和细胞不应期一致会引起eupnoea节律,而细胞内钙振荡的速度较慢,会引起叹息节奏。捕获这些动态的数学模型同时产生不同频率的eupnoea和叹息节奏,可以由生理参数单独调节。我们通过实验验证了关于细胞内钙信号传导的关键模型预测。所有脊椎动物的大脑都具有网络振荡器,该振荡器驱动呼吸泵进行常规呼吸。然而,在呼吸空气的哺乳动物中,肺部容易塌陷,呼吸节律性网络可能重塑了普遍存在的细胞内信号系统,以产生第二较慢的节律(对于叹气),从而防止肺不张,而不会阻碍eupnoea。关键点:简化的基于活动的preBötC模型从单个神经元群体产生吸气和叹息节奏。灵感归因于典型的兴奋性网络振荡器机制。叹息来自细胞内钙信号传导。该模型预测,内质网对钙的摄取和释放的扰动会违反直觉地加速和减慢叹息的节律性,分别,经过实验验证。脊椎动物的进化可能已经适应了现有的细胞内信号传导机制,以产生优化哺乳动物肺功能所需的缓慢振荡。
    Breathing behaviour involves the generation of normal breaths (eupnoea) on a timescale of seconds and sigh breaths on the order of minutes. Both rhythms emerge in tandem from a single brainstem site, but whether and how a single cell population can generate two disparate rhythms remains unclear. We posit that recurrent synaptic excitation in concert with synaptic depression and cellular refractoriness gives rise to the eupnoea rhythm, whereas an intracellular calcium oscillation that is slower by orders of magnitude gives rise to the sigh rhythm. A mathematical model capturing these dynamics simultaneously generates eupnoea and sigh rhythms with disparate frequencies, which can be separately regulated by physiological parameters. We experimentally validated key model predictions regarding intracellular calcium signalling. All vertebrate brains feature a network oscillator that drives the breathing pump for regular respiration. However, in air-breathing mammals with compliant lungs susceptible to collapse, the breathing rhythmogenic network may have refashioned ubiquitous intracellular signalling systems to produce a second slower rhythm (for sighs) that prevents atelectasis without impeding eupnoea. KEY POINTS: A simplified activity-based model of the preBötC generates inspiratory and sigh rhythms from a single neuron population. Inspiration is attributable to a canonical excitatory network oscillator mechanism. Sigh emerges from intracellular calcium signalling. The model predicts that perturbations of calcium uptake and release across the endoplasmic reticulum counterintuitively accelerate and decelerate sigh rhythmicity, respectively, which was experimentally validated. Vertebrate evolution may have adapted existing intracellular signalling mechanisms to produce slow oscillations needed to optimize pulmonary function in mammals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    pre-Botzinger复合物(preBotC),位于髓质,是呼吸的基本节律生成神经网络。阿片类药物在这个网络上的作用削弱了它产生强大的能力,有节奏的输出,导致危及生命的阿片类药物引起的呼吸抑制(OIRD)。OIRD的发生因个人和内部和外部状态而异,增加使用阿片类药物的风险,然而,这种变异性的机制在很大程度上是未知的。在这项研究中,我们利用preBotC的计算模型进行了一些计算机模拟实验,探索网络拓扑和preBotC神经元的固有特性的差异如何影响网络节奏对阿片类药物的敏感性。我们发现,preBotC网络在计算机上产生的节律对模拟阿片类药物表现出可变的反应,与体外preBotC网络相似。这种可变性主要是由于网络拓扑的随机差异,并且可以通过网络连接和固有神经元属性的强加变化来操纵。我们的结果确定了preBootC网络的特征,这些特征可能会调节其对阿片类药物的敏感性。意义陈述脑干中产生呼吸节律的神经网络被阿片类药物破坏。然而,这种反应出奇的不可预测。通过构建这个节奏生成网络的计算模型,我们说明了个体网络中生物物理特性和连接模式分布的随机差异如何预测它们对阿片类药物的反应,我们展示了这些网络特征的调节如何使呼吸更容易受到阿片类药物的影响或抵抗。
    The preBötzinger complex (preBötC), located in the medulla, is the essential rhythm-generating neural network for breathing. The actions of opioids on this network impair its ability to generate robust, rhythmic output, contributing to life-threatening opioid-induced respiratory depression (OIRD). The occurrence of OIRD varies across individuals and internal and external states, increasing the risk of opioid use, yet the mechanisms of this variability are largely unknown. In this study, we utilize a computational model of the preBötC to perform several in silico experiments exploring how differences in network topology and the intrinsic properties of preBötC neurons influence the sensitivity of the network rhythm to opioids. We find that rhythms produced by preBötC networks in silico exhibit variable responses to simulated opioids, similar to the preBötC network in vitro. This variability is primarily due to random differences in network topology and can be manipulated by imposed changes in network connectivity and intrinsic neuronal properties. Our results identify features of the preBötC network that may regulate its susceptibility to opioids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    硫化氢(H2S),在大脑中合成,调制神经网络。最近,已经认识到H2S在呼吸中枢模式生成中的重要性,然而,对于H2S在延髓呼吸网络中的功能仍知之甚少.这里,为了评估H2S在延髓呼吸网络中的功能作用,Bötzinger复合体(BötC),前Bötzinger复合体(preBötC),和头端腹侧呼吸组(rVRG),我们通过使用去生育的雄性大鼠的原位动脉灌注制剂观察了抑制每个区域H2S合成对呼吸模式的影响。微量注射H2S合成酶抑制剂后,胱硫醚β-合成酶,进入BötC或preBötC,随着呼气和吸气时间的缩短,吸气脉冲的幅度减小,呼吸频率增加,分别。在存在兴奋性突触传递阻断剂的情况下,这些改变被消除或减弱。另一方面,在将H2S合成酶抑制剂显微注射入rVRG后,吸气脉冲的幅度减弱,呼吸频率下降,这与通过阻断rVRG的抑制性突触传递所获得的效果相反。这些结果表明,在BötC和preBötC中合成的H2S通过维持呼吸阶段和维持吸气能力来限制呼吸频率。相比之下,在rVRG中合成的H2S通过调节吸气间隔和维持吸气的力量来促进呼吸频率。潜在机制可能促进兴奋性突触传递和/或减弱抑制性突触传递。
    Hydrogen sulfide (H2S), which is synthesized in the brain, modulates the neural network. Recently, the importance of H2S in respiratory central pattern generation has been recognized, yet the function of H2S in the medullary respiratory network remains poorly understood. Here, to evaluate the functional roles of H2S in the medullary respiratory network, the Bötzinger complex (BötC), the pre-Bötzinger complex (preBötC), and the rostral ventral respiratory group (rVRG), we observed the effects of inhibition of H2S synthesis at each region on the respiratory pattern by using an in situ arterially perfused preparation of decerebrated male rats. After microinjection of an H2S synthase inhibitor, cystathionine β-synthase, into the BötC or preBötC, the amplitude of the inspiratory burst decreased and the respiratory frequency increased according to shorter expiration and inspiration, respectively. These alterations were abolished or attenuated in the presence of a blocker of excitatory synaptic transmission. On the other hand, after microinjection of the H2S synthase inhibitor into the rVRG, the amplitude of the inspiratory burst was attenuated, and the respiratory frequency decreased, which was the opposite effect to those obtained by blockade of inhibitory synaptic transmission at the rVRG. These results suggest that H2S synthesized in the BötC and preBötC functions to limit respiratory frequency by sustaining the respiratory phase and to maintain the power of inspiration. In contrast, H2S synthesized in the rVRG functions to promote respiratory frequency by modulating the interval of inspiration and to maintain the power of inspiration. The underlying mechanism might facilitate excitatory synaptic transmission and/or attenuate inhibitory synaptic transmission.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    呼吸需要脑干中神经元活动的不同模式。神经元网络中负责呼吸节律生成的最关键部分是preBötzinger复合物(preBötC),位于延髓腹外侧。该区域包含节律性谷氨酸能神经元和大量抑制性神经元。这里,我们旨在分析麻醉小鼠preBötC中甘氨酸能神经元的活性。为了识别抑制性神经元,我们使用了一个转基因小鼠系,允许在甘氨酸能神经元中表达视紫红质2。通过单个记录电极使用并细胞记录和光遗传学激活,我们能够确定神经元是抑制性的,并确定它们与呼吸节律相关的活动模式。我们可以证明preBötC中甘氨酸能呼吸神经元的活动模式是异质的。有趣的是,在每个呼吸周期中,只有少数已鉴定的甘氨酸能神经元显示出清晰的锁相活动模式.一起来看,我们可以证明,神经元的识别是可能的,通过细胞间的记录和光遗传学激活的结合,通过一个单一的记录电极。
    Breathing requires distinct patterns of neuronal activity in the brainstem. The most critical part of the neuronal network responsible for respiratory rhythm generation is the preBötzinger Complex (preBötC), located in the ventrolateral medulla. This area contains both rhythmogenic glutamatergic neurons and also a high number of inhibitory neurons. Here, we aimed to analyze the activity of glycinergic neurons in the preBötC in anesthetized mice. To identify inhibitory neurons, we used a transgenic mouse line that allows expression of Channelrhodopsin 2 in glycinergic neurons. Using juxtacellular recordings and optogenetic activation via a single recording electrode, we were able to identify neurons as inhibitory and define their activity pattern in relation to the breathing rhythm. We could show that the activity pattern of glycinergic respiratory neurons in the preBötC was heterogeneous. Interestingly, only a minority of the identified glycinergic neurons showed a clear phase-locked activity pattern in every respiratory cycle. Taken together, we could show that neuron identification is possible by a combination of juxtacellular recordings and optogenetic activation via a single recording electrode.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    前Bötzinger复合体(preBötC),吸气呼吸节律的主要发生器,包含直接投射到面部核(7n)运动神经元以协调口面和鼻面活动的神经元。为了进一步理解7n-projectingpreBötC神经元的身份,我们使用光遗传学病毒转基因方法的组合来证明这些神经元的选择性光抑制会影响神秘垫的活性,对呼吸影响最小。这些效果因所用的麻醉剂类型以及麻醉状态和意识状态之间而改变。我们转导的7n投射preBötC神经元群包括兴奋性和抑制性神经元,它们也将络脉发送到多个脑干核中,涉及自主神经活动的调节。我们证明了前BötC神经元亚群的调节,基于它们的轴突投影,是一种有用的策略,可以提高我们对协调和整合呼吸与不同运动和生理行为的机制的理解。这是非常重要的,鉴于自主活动和口面行为的异常呼吸调节与疾病的发展和进展有关。
    虽然呼吸似乎很容易,这是一个复杂的过程,许多肌肉协调以允许空气流入肺部。这些肌肉还控制我们呼出的空气的流动,让我们说话,唱歌,吃,或者喝酒。控制这些肌肉的大脑回路,也会影响大脑的其他部分。preBötzinger情结,这是脑干回路产生和控制呼吸的关键区域,包含广泛投射的神经元,连接到大脑的其他区域。这有助于调节嗅觉,情绪状态,心率,甚至血压。了解preBötzinger复合体是如何组织的,可以解开呼吸如何影响这些其他过程。Melo等人。想了解他们是否可以操纵preötzinger复杂神经元的一个亚组的活动,这些神经元投射到面部核-当我们呼吸时控制面部肌肉的大脑区域-而不影响呼吸。如果能做到这一点,它也可能通过操纵选择性preBötzinger神经元来影响血压,因此高血压的发展,对呼吸没有任何影响。为了检验这个假设,Melo等人。使用大鼠,其中投射到面部核的preBötzinger复合物神经元的激活被阻断。这减少了鼻子周围肌肉的活动,对呼吸几乎没有任何影响。Melo等人。还发现大鼠的意识状态(麻醉或有意识)可能会影响preBötzinger复合物神经元如何控制这些肌肉。Melo等人。还观察到投射到面核的preBötzinger复合体神经元有投射到脑干的许多其他区域。这可能有助于协调呼吸,心血管,口面,和潜在的其他生理功能。Melo等人的发现。为探索preBötzinger复合物神经元的特定亚群对其他生理活动的呼吸调节的影响奠定了技术基础,包括血压和心率,如高血压和心力衰竭。更广泛地说,大多数大脑区域包含复杂和异质的神经元群,该策略已由Melo等人验证。Al.可以应用于解开其他大脑功能关系。
    The pre-Bötzinger complex (preBötC), a key primary generator of the inspiratory breathing rhythm, contains neurons that project directly to facial nucleus (7n) motoneurons to coordinate orofacial and nasofacial activity. To further understand the identity of 7n-projecting preBötC neurons, we used a combination of optogenetic viral transgenic approaches to demonstrate that selective photoinhibition of these neurons affects mystacial pad activity, with minimal effects on breathing. These effects are altered by the type of anesthetic employed and also between anesthetized and conscious states. The population of 7n-projecting preBötC neurons we transduced consisted of both excitatory and inhibitory neurons that also send collaterals to multiple brainstem nuclei involved with the regulation of autonomic activity. We show that modulation of subgroups of preBötC neurons, based on their axonal projections, is a useful strategy to improve our understanding of the mechanisms that coordinate and integrate breathing with different motor and physiological behaviors. This is of fundamental importance, given that abnormal respiratory modulation of autonomic activity and orofacial behaviors have been associated with the development and progression of diseases.
    While breathing seems to come easy, it is a complex process in which many muscles coordinate to allow air to flow into the lungs. These muscles also control the flow of air we breathe out to allow us to talk, sing, eat, or drink. The brain circuits that control these muscles, can also influence other parts of the brain. The preBötzinger Complex, which is a key region of brainstem circuits that generate and control breathing, contains neurons that also project widely, connecting to other regions of the brain. This helps to modulate the sense of smell, emotional state, heart rate, and even blood pressure. Understanding how the preBötzinger Complex is organized can untangle how breathing can influence these other processes. Melo et al. wanted to learn whether they could manipulate the activity of a subgroup of preBötzinger Complex neurons that project into the facial nucleus – a region of the brain that controls the muscles of the face when we breathe – without affecting breathing. If this can be done, it might also be possible to affect blood pressure by manipulating selective preBötzinger neurons, and thus the development of hypertension, without having any impact on breathing. To test this hypothesis, Melo et al. used rats in which the activation of preBötzinger Complex neurons that project into the facial nucleus was blocked. This decreased the activity of the muscles around the nose with hardly any effect on breathing. Melo et al. also found that the state of consciousness of the rat (anesthetized or conscious) could affect how preBötzinger Complex neurons control these muscles. Melo et al. also observed that preBötzinger Complex neurons projecting into the facial nucleus had projections into many other regions in the brainstem. This might help to the coordinate respiratory, cardiovascular, orofacial, and potentially other physiological functions. The findings of Melo et al. set a technical foundation for exploring the influence of specific subgroups of preBötzinger Complex neurons on respiratory modulation of other physiological activities, including blood pressure and heart rate and in conditions, such as hypertension and heart failure. More broadly, most brain regions contain complex and heterogeneous groups of neurons and the strategy validated by Melo et. al. could be applied to unravel other brain-function relationships.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号