Resnet

ResNet
  • 文章类型: Journal Article
    心房颤动(AF)是最常见的心律失常,随着全球发病率和患病率的上升,对公共卫生构成重大影响。在本文中,我们介绍了一种方法,该方法结合了递归图(RP)技术和ResNet架构来预测AF。我们的方法包括三个主要步骤:使用小波滤波去除噪声干扰;通过相空间重构生成RP;并采用多级链式残差网络进行AF预测。为了验证我们的方法,我们建立了一个全面的数据库,包括1008例房颤患者和48,292例非房颤患者的心电图(ECG)记录,总共有2067和93,129个心电图,分别。实验结果表明,预测精度较高(90.5%),召回(89.1%),F1得分(89.8%),准确度(93.4%),和AUC(96%)在我们的数据集上。此外,当在公开可用的AF数据集(AFPDB)上测试时,我们的方法实现了更高的预测精度(94.8%),召回(99.4%),F1得分(97.0%),准确度(97.0%),AUC(99.7%)。这些发现表明,我们提出的方法可以有效地从ECG信号中提取细微的信息,导致高度准确的AF预测。
    Atrial fibrillation (AF) is the most prevalent form of arrhythmia, with a rising incidence and prevalence worldwide, posing significant implications for public health. In this paper, we introduce an approach that combines the Recurrence Plot (RP) technique and the ResNet architecture to predict AF. Our method involves three main steps: using wavelet filtering to remove noise interference; generating RPs through phase space reconstruction; and employing a multi-level chained residual network for AF prediction. To validate our approach, we established a comprehensive database consisting of electrocardiogram (ECG) recordings from 1008 AF patients and 48,292 Non-AF patients, with a total of 2067 and 93,129 ECGs, respectively. The experimental results demonstrated high levels of prediction precision (90.5%), recall (89.1%), F1 score (89.8%), accuracy (93.4%), and AUC (96%) on our dataset. Moreover, when tested on a publicly available AF dataset (AFPDB), our method achieved even higher prediction precision (94.8%), recall (99.4%), F1 score (97.0%), accuracy (97.0%), and AUC (99.7%). These findings suggest that our proposed method can effectively extract subtle information from ECG signals, leading to highly accurate AF predictions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Sleep,或缺乏,对人体生理的许多方面都有深远的影响,认知表现,和情感健康。为了确保不受干扰的睡眠监测,诸如心冲击图(BCG)之类的不显眼的测量对于持续,真实世界的数据采集。目前对睡眠期间BCG数据的分析仍然具有挑战性。主要是由于低信噪比,物理运动,以及高度的个体间和个体内变异性。为了克服这些挑战,这项工作提出了一种新颖的方法,以使用有监督的深度学习设置来改善从BCG测量中提取J峰。所提出的方法包括使用对称和连续的核函数对离散参考心跳事件进行建模,称为代理信号。深度学习模型近似从其检测到目标心跳的该替代信号。将所提出的具有各种替代信号的方法与来自信号处理和机器学习方法的最先进的方法进行比较和评估。BCG数据集是使用嵌入床垫中的惯性测量单元(IMU)在17个晚上收集的。连同心电图作为参考心跳,总共134小时。此外,我们首次应用了专门用于比较基于事件的时间序列的评估指标,以评估心跳检测的质量。结果表明,与现有方法相比,该方法在心跳估计方面具有更高的准确性,在64-s窗口中的MAE(平均绝对误差)为1.1s,在8-s窗口中的MAE为1.38s。此外,结果表明,我们的新方法在检测各种评估指标的心跳位置方面优于当前方法。据我们所知,这是使用内核对时间事件进行编码的第一种方法,也是使用基于回归的序列到序列模型对各种事件编码进行事件检测的首次系统比较。
    Sleep, or the lack thereof, has far-reaching consequences on many aspects of human physiology, cognitive performance, and emotional wellbeing. To ensure undisturbed sleep monitoring, unobtrusive measurements such as ballistocardiogram (BCG) are essential for sustained, real-world data acquisition. Current analysis of BCG data during sleep remains challenging, mainly due to low signal-to-noise ratio, physical movements, as well as high inter- and intra-individual variability. To overcome these challenges, this work proposes a novel approach to improve J-peak extraction from BCG measurements using a supervised deep learning setup. The proposed method consists of the modeling of the discrete reference heartbeat events with a symmetric and continuous kernel-function, referred to as surrogate signal. Deep learning models approximate this surrogate signal from which the target heartbeats are detected. The proposed method with various surrogate signals is compared and evaluated with state-of-the-art methods from both signal processing and machine learning approaches. The BCG dataset was collected over 17 nights using inertial measurement units (IMUs) embedded in a mattress, together with an ECG for reference heartbeats, for a total of 134 h. Moreover, we apply for the first time an evaluation metric specialized for the comparison of event-based time series to assess the quality of heartbeat detection. The results show that the proposed approach demonstrates superior accuracy in heartbeat estimation compared to existing approaches, with an MAE (mean absolute error) of 1.1 s in 64-s windows and 1.38 s in 8-s windows. Furthermore, it is shown that our novel approach outperforms current methods in detecting the location of heartbeats across various evaluation metrics. To the best of our knowledge, this is the first approach to encode temporal events using kernels and the first systematic comparison of various event encodings for event detection using a regression-based sequence-to-sequence model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    医学图像分析(MI)是先进医学的重要组成部分,因为它有助于早期发现和诊断各种疾病。通过磁共振成像(MRI)对脑肿瘤进行分类是一项挑战,需要准确的模型来进行有效的诊断和治疗计划。本文介绍了AG-MSTLN-EL,利用多源迁移学习的注意力辅助多源迁移学习集成学习模型(VisualGeometryGroupResNet和GoogLeNet),注意机制,和集成学习,以实现健壮和准确的脑肿瘤分类。多源迁移学习允许从不同领域提取知识,增强泛化。注意机制集中在特定的MRI区域,提高可解释性和分类性能。集成学习结合了k-最近邻,Softmax,和支持向量机分类器,提高准确性和可靠性。在具有3064个脑肿瘤MRI图像的数据集上评估模型的性能,AG-MSTLN-EL在所有分类措施方面都优于最先进的模型。迁移学习模式的创新组合,注意机制,集成学习为脑肿瘤分类提供了可靠的解决方案。其卓越的性能和高解释性使AG-MSTLN-EL成为临床医生和研究人员在医学图像分析中的宝贵工具。
    The analysis of medical images (MI) is an important part of advanced medicine as it helps detect and diagnose various diseases early. Classifying brain tumors through magnetic resonance imaging (MRI) poses a challenge demanding accurate models for effective diagnosis and treatment planning. This paper introduces AG-MSTLN-EL, an attention-aided multi-source transfer learning ensemble learning model leveraging multi-source transfer learning (Visual Geometry Group ResNet and GoogLeNet), attention mechanisms, and ensemble learning to achieve robust and accurate brain tumor classification. Multi-source transfer learning allows knowledge extraction from diverse domains, enhancing generalization. The attention mechanism focuses on specific MRI regions, increasing interpretability and classification performance. Ensemble learning combines k-nearest neighbor, Softmax, and support vector machine classifiers, improving both accuracy and reliability. Evaluating the model\'s performance on a dataset with 3064 brain tumor MRI images, AG-MSTLN-EL outperforms state-of-the-art models in terms of all classification measures. The model\'s innovative combination of transfer learning, attention mechanism, and ensemble learning provides a reliable solution for brain tumor classification. Its superior performance and high interpretability make AG-MSTLN-EL a valuable tool for clinicians and researchers in medical image analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自闭症谱系障碍(ASD)是儿童的异质性障碍,目前的临床诊断是通过行为学来完成的,认知,发展,和语言指标。这些临床指标可能是不完美的衡量标准,因为它们具有很高的重测变异性,并受环境等评估因素的影响,社会结构,或合并症。神经成像与机器学习相结合的进步为开发更可量化的方法提供了机会,比现有的临床技术可靠。在本文中,我们设计和开发了一个深度学习模型,该模型对功能磁共振成像(fMRI)数据进行操作,并且可以在ASD和神经典型大脑之间进行分类。我们引入了一种新颖的策略,将从fMRI信号中提取的时间序列数据转换为Gramian角场(GAF),同时锁定数据中的时间和空间模式。我们的动机是设计和开发一个可以编码时间序列的新框架,从功能磁共振成像数据中获得,转换为可由在计算机视觉中成功的深度学习架构使用的图像。在我们提出的名为ASD-GResTM的框架中,我们使用卷积神经网络(CNN)从GAF图像中提取有用的特征。然后,我们使用长短期记忆(LSTM)层来学习区域之间的活动。最后,最后一个LSTM层的输出表示应用于单层感知器(SPL)以获得最终分类。我们广泛的实验证明了4个中心的高精度,并在两个中心上优于最先进的模型,精度分别提高了17.58%和6.7%,分别与现有技术相比。我们的模型达到了81.78%的最大准确度,具有高度的灵敏度和特异性。所有的训练,验证,并且测试是使用公开可用的ABIDE-I基准测试数据集完成的。
    Autism Spectrum Disorder (ASD) is a heterogeneous disorder in children, and the current clinical diagnosis is accomplished using behavioral, cognitive, developmental, and language metrics. These clinical metrics can be imperfect measures as they are subject to high test-retest variability, and are influenced by assessment factors such as environment, social structure, or comorbid disorders. Advances in neuroimaging coupled with machine-learning provides an opportunity to develop methods that are more quantifiable, and reliable than existing clinical techniques. In this paper, we design and develop a deep-learning model that operates on functional magnetic resonance imaging (fMRI) data, and can classify between ASD and neurotypical brains. We introduce a novel strategy to transform time-series data extracted from fMRI signals into Gramian Angular Field (GAF) while locking in the temporal and spatial patterns in the data. Our motivation is to design and develop a novel framework that could encode the time-series, acquired from fMRI data, into images that can be used by deep-learning architectures that have been successful in computer vision. In our proposed framework called ASD-GResTM, we used a Convolutional Neural Network (CNN) to extract useful features from GAF images. We then used a Long Short-Term Memory (LSTM) layer to learn the activities between the regions. Finally, the output representations of the last LSTM layer are applied to a single-layer perceptron (SPL) to get the final classification. Our extensive experimentation demonstrates high accuracy across 4 centers, and outperforms state-of-the-art models on two centers with an increase in the accuracy of 17.58% and 6.7%, respectively as compared to the state of the art. Our model achieved the maximum accuracy of 81.78% with high degree of sensitivity and specificity. All training, validation, and testing was accomplished using openly available ABIDE-I benchmarking dataset.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    计算机数控(CNC)设备的主轴旋转误差直接反映了工件的加工质量,是反映CNC设备性能和可靠性的关键指标。现有的旋转误差预测方法没有考虑不同传感器数据的重要性。本研究开发了一种自适应加权深度残差网络(ResNet),用于预测主轴旋转误差,从而在容易获得的振动信息和难以获得的旋转误差之间建立精确的映射。首先,多传感器数据由振动传感器收集,采用短时傅里叶变换(STFT)提取原始数据中的特征信息。然后,基于注意力加权操作构造具有剩余连接的自适应特征重新校准单元。通过堆叠多个残差块和注意力加权单元,对不同通道的数据进行自适应加权,突出重要信息,抑制冗余信息。权重可视化结果指示自适应加权ResNet(AWResNet)可以学习用于信道重新校准的一组权重。对比结果表明,AWResNet比其他深度学习模型具有更高的预测精度,可用于主轴旋转误差预测。
    The spindle rotation error of computer numerical control (CNC) equipment directly reflects the machining quality of the workpiece and is a key indicator reflecting the performance and reliability of CNC equipment. Existing rotation error prediction methods do not consider the importance of different sensor data. This study developed an adaptive weighted deep residual network (ResNet) for predicting spindle rotation errors, thereby establishing accurate mapping between easily obtainable vibration information and difficult-to-obtain rotation errors. Firstly, multi-sensor data are collected by a vibration sensor, and Short-time Fourier Transform (STFT) is adopted to extract the feature information in the original data. Then, an adaptive feature recalibration unit with residual connection is constructed based on the attention weighting operation. By stacking multiple residual blocks and attention weighting units, the data of different channels are adaptively weighted to highlight important information and suppress redundancy information. The weight visualization results indicate that the adaptive weighted ResNet (AWResNet) can learn a set of weights for channel recalibration. The comparison results indicate that AWResNet has higher prediction accuracy than other deep learning models and can be used for spindle rotation error prediction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脑电图(EEG)在癫痫发作的检测和分析中起着关键作用,影响了世界上超过七千万人。尽管如此,用于癫痫检测的EEG信号的视觉解释是费力且耗时的。为了应对这个开放的挑战,我们引入了一种简单而有效的混合深度学习方法,名为ResBiLSTM,使用EEG信号检测癫痫发作。首先,一维残差神经网络(ResNet)是专为巧妙地提取脑电信号的局部空间特征。随后,所获取的特征被输入到双向长短期记忆(BiLSTM)层以对时间依赖性进行建模。通过两个完全连接的层进一步处理这些输出特征,以实现最终的癫痫发作检测。ResBiLSTM的性能是在波恩大学和坦普尔大学医院(TUH)提供的癫痫发作数据集上评估的。ResBiLSTM模型在波恩数据集上的二元和三元分类中实现了98.88-100%的癫痫发作检测准确率。TUH癫痫发作语料库(TUSZ)数据集上的七种癫痫发作类型的癫痫发作识别的实验结果表明,ResBiLSTM模型通过10倍交叉验证获得95.03%的分类准确度和95.03%的加权F1评分。这些发现表明,ResBiLSTM优于几种最新的深度学习方法。
    Electroencephalogram (EEG) plays a pivotal role in the detection and analysis of epileptic seizures, which affects over 70 million people in the world. Nonetheless, the visual interpretation of EEG signals for epilepsy detection is laborious and time-consuming. To tackle this open challenge, we introduce a straightforward yet efficient hybrid deep learning approach, named ResBiLSTM, for detecting epileptic seizures using EEG signals. Firstly, a one-dimensional residual neural network (ResNet) is tailored to adeptly extract the local spatial features of EEG signals. Subsequently, the acquired features are input into a bidirectional long short-term memory (BiLSTM) layer to model temporal dependencies. These output features are further processed through two fully connected layers to achieve the final epileptic seizure detection. The performance of ResBiLSTM is assessed on the epileptic seizure datasets provided by the University of Bonn and Temple University Hospital (TUH). The ResBiLSTM model achieves epileptic seizure detection accuracy rates of 98.88-100% in binary and ternary classifications on the Bonn dataset. Experimental outcomes for seizure recognition across seven epilepsy seizure types on the TUH seizure corpus (TUSZ) dataset indicate that the ResBiLSTM model attains a classification accuracy of 95.03% and a weighted F1 score of 95.03% with 10-fold cross-validation. These findings illustrate that ResBiLSTM outperforms several recent deep learning state-of-the-art approaches.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在深度学习模型的背景下,为了更好地理解基于梯度下降的训练方法,最近人们开始注意研究损失函数的表面。此搜索适当的描述,分析和拓扑,在识别伪最小值和表征梯度动力学方面已经做出了许多努力。我们的工作旨在通过提供一种拓扑度量来评估多层神经网络的损失复杂性,从而为该领域做出贡献。我们通过推导其各自损失函数的复杂性的上限和下限,并揭示该复杂性如何受到隐藏单元数量的影响,来比较具有常见S形激活函数的深层和浅层体系结构。训练模型,和使用的激活函数。此外,我们发现损失函数或模型架构的某些变化,例如,在前馈网络中添加2正则化项或实现跳过连接,在特定情况下不影响丢失拓扑。
    In the context of deep learning models, attention has recently been paid to studying the surface of the loss function in order to better understand training with methods based on gradient descent. This search for an appropriate description, both analytical and topological, has led to numerous efforts in identifying spurious minima and characterize gradient dynamics. Our work aims to contribute to this field by providing a topological measure for evaluating loss complexity in the case of multilayer neural networks. We compare deep and shallow architectures with common sigmoidal activation functions by deriving upper and lower bounds for the complexity of their respective loss functions and revealing how that complexity is influenced by the number of hidden units, training models, and the activation function used. Additionally, we found that certain variations in the loss function or model architecture, such as adding an ℓ2 regularization term or implementing skip connections in a feedforward network, do not affect loss topology in specific cases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    几千年来,中医一直依赖脉诊作为医疗保健评估的基石。尽管它历史悠久,用途广泛,中医脉诊由于其对主观解释和理论分析的依赖性,在诊断准确性和一致性方面面临挑战。这项研究介绍了一种方法,通过利用深度学习算法的力量来提高中医脉诊对糖尿病的准确性,特别是LeNet和ResNet模型,用于脉冲波形分析。LeNet和ResNet模型用于使用包括健康个体和糖尿病患者的不同数据集分析TCM脉搏波形。这些先进的算法与现代中医脉搏测量仪器的集成在减少依赖于医生的变异性和提高诊断的可靠性方面显示出巨大的希望。这项研究弥合了古代智慧与医疗保健尖端技术之间的差距。LeNet-F,结合基于TMC的脉冲的特殊特征提取,显示出改进的培训和测试准确性(73%和67%,分别,与LeNet的70%和65%相比)。此外,ResNet模型的表现始终优于LeNet,ResNet18-F在训练中达到最高准确率(82%),在测试中达到74%。先进的预处理技术和附加功能显著有助于ResNet18-F的卓越性能,指出了特征工程策略的重要性。此外,这项研究确定了未来研究的潜在途径,包括优化预处理技术以处理脉冲波形变化和噪声水平,整合额外的时频域特征,开发特定领域的特征选择算法,并将范围扩大到其他疾病。这些进步旨在完善中医脉诊,提高其准确性和可靠性,同时将其集成到现代技术中,以获得更有效的医疗保健方法。
    Traditional Chinese medicine (TCM) has relied on pulse diagnosis as a cornerstone of healthcare assessment for thousands of years. Despite its long history and widespread use, TCM pulse diagnosis has faced challenges in terms of diagnostic accuracy and consistency due to its dependence on subjective interpretation and theoretical analysis. This study introduces an approach to enhance the accuracy of TCM pulse diagnosis for diabetes by leveraging the power of deep learning algorithms, specifically LeNet and ResNet models, for pulse waveform analysis. LeNet and ResNet models were applied to analyze TCM pulse waveforms using a diverse dataset comprising both healthy individuals and patients with diabetes. The integration of these advanced algorithms with modern TCM pulse measurement instruments shows great promise in reducing practitioner-dependent variability and improving the reliability of diagnoses. This research bridges the gap between ancient wisdom and cutting-edge technology in healthcare. LeNet-F, incorporating special feature extraction of a pulse based on TMC, showed improved training and test accuracies (73% and 67%, respectively, compared with LeNet\'s 70% and 65%). Moreover, ResNet models consistently outperformed LeNet, with ResNet18-F achieving the highest accuracy (82%) in training and 74% in testing. The advanced preprocessing techniques and additional features contribute significantly to ResNet18-F\'s superior performance, indicating the importance of feature engineering strategies. Furthermore, the study identifies potential avenues for future research, including optimizing preprocessing techniques to handle pulse waveform variations and noise levels, integrating additional time-frequency domain features, developing domain-specific feature selection algorithms, and expanding the scope to other diseases. These advancements aim to refine traditional Chinese medicine pulse diagnosis, enhancing its accuracy and reliability while integrating it into modern technology for more effective healthcare approaches.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    手语识别技术可以帮助有听力障碍的人与非听力障碍的人进行交流。目前,随着社会的快速发展,深度学习也为手语识别工作提供了一定的技术支持。在手语识别任务中,传统的卷积神经网络用于从手语视频中提取时空特征,导致识别率低。然而,大量基于视频的手语数据集需要大量的计算资源进行训练,同时确保网络的泛化,这对认可提出了挑战。在本文中,我们提出了一种基于残差网络(ResNet)和长短期记忆(LSTM)的基于视频的手语识别方法。随着网络层数量的增加,ResNet网络可以有效解决粒度爆炸问题,获得更好的时间序列特征。我们使用ResNet卷积网络作为骨干模型。LSTM利用门的概念来控制单元状态并更新序列的输出特征值。ResNet提取手语特征。然后,将学习到的特征空间作为LSTM网络的输入,获得长序列特征。它可以有效地提取手语视频中的时空特征,提高手语动作的识别率。广泛的实验评估证明了所提出方法的有效性和优越性能。准确率为85.26%,F1-得分为84.98%,阿根廷手语(LSA64)的准确率为87.77%。
    Sign language recognition technology can help people with hearing impairments to communicate with non-hearing-impaired people. At present, with the rapid development of society, deep learning also provides certain technical support for sign language recognition work. In sign language recognition tasks, traditional convolutional neural networks used to extract spatio-temporal features from sign language videos suffer from insufficient feature extraction, resulting in low recognition rates. Nevertheless, a large number of video-based sign language datasets require a significant amount of computing resources for training while ensuring the generalization of the network, which poses a challenge for recognition. In this paper, we present a video-based sign language recognition method based on Residual Network (ResNet) and Long Short-Term Memory (LSTM). As the number of network layers increases, the ResNet network can effectively solve the granularity explosion problem and obtain better time series features. We use the ResNet convolutional network as the backbone model. LSTM utilizes the concept of gates to control unit states and update the output feature values of sequences. ResNet extracts the sign language features. Then, the learned feature space is used as the input of the LSTM network to obtain long sequence features. It can effectively extract the spatio-temporal features in sign language videos and improve the recognition rate of sign language actions. An extensive experimental evaluation demonstrates the effectiveness and superior performance of the proposed method, with an accuracy of 85.26%, F1-score of 84.98%, and precision of 87.77% on Argentine Sign Language (LSA64).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    为了开发一种集成影像组学的半自动模型,深度学习,使用双参数MRI(bpMRI)图像预测前列腺癌(PCa)患者骨转移(BM)的临床特征。
    一项回顾性研究包括414名PCa患者(BM,n=136;NO-BM,2016年1月至2022年12月期间,来自两个机构(中心1,n=318;中心2,n=96)的n=278)。MRI扫描通过PET-CT或ECT预处理证实BM状态。使用自动描绘肿瘤模型将bpMRI图像上的肿瘤区域描绘为肿瘤感兴趣区域(ROI),用骰子相似系数(DSC)评估。样本是自动绘制的,精致,并用于训练ResNetBM预测模型。临床,影像组学,深度学习数据被合成到ResNet-C模型中,使用接收器工作特性(ROC)进行评估。
    自动分割模型的DSC为0.607。临床BM预测的内部验证的准确性(ACC)为0.650,曲线下面积(AUC)为0.713;外部队列的ACC为0.668,AUC为0.757。深度学习模型的内部ACC为0.875,AUC为0.907,外部队列的ACC为0.833,AUC为0.862。Radiomics模型在内部注册的ACC为0.819,AUC为0.852,外部的ACC为0.885,AUC为0.903。ResNet-C显示出内部的最高ACC为0.902,AUC为0.934,外部队列的ACC为0.885,AUC为0.903。
    ResNet-C模型,利用bpMRI扫描策略,准确评估新诊断前列腺癌(PCa)患者的骨转移(BM)状态,促进精确的治疗计划和改善患者预后。
    UNASSIGNED: To develop a semi-automatic model integrating radiomics, deep learning, and clinical features for Bone Metastasis (BM) prediction in prostate cancer (PCa) patients using Biparametric MRI (bpMRI) images.
    UNASSIGNED: A retrospective study included 414 PCa patients (BM, n=136; NO-BM, n=278) from two institutions (Center 1, n=318; Center 2, n=96) between January 2016 and December 2022. MRI scans were confirmed with BM status via PET-CT or ECT pre-treatment. Tumor areas on bpMRI images were delineated as tumor\'s region of interest (ROI) using auto-delineation tumor models, evaluated with Dice similarity coefficient (DSC). Samples were auto-sketched, refined, and used to train the ResNet BM prediction model. Clinical, radiomics, and deep learning data were synthesized into the ResNet-C model, evaluated using receiver operating characteristic (ROC).
    UNASSIGNED: The auto-segmentation model achieved a DSC of 0.607. Clinical BM prediction\'s internal validation had an accuracy (ACC) of 0.650 and area under the curve (AUC) of 0.713; external cohort had an ACC of 0.668 and AUC of 0.757. The deep learning model yielded an ACC of 0.875 and AUC of 0.907 for the internal, and ACC of 0.833 and AUC of 0.862 for the external cohort. The Radiomics model registered an ACC of 0.819 and AUC of 0.852 internally, and ACC of 0.885 and AUC of 0.903 externally. ResNet-C demonstrated the highest ACC of 0.902 and AUC of 0.934 for the internal, and ACC of 0.885 and AUC of 0.903 for the external cohort.
    UNASSIGNED: The ResNet-C model, utilizing bpMRI scanning strategy, accurately assesses bone metastasis (BM) status in newly diagnosed prostate cancer (PCa) patients, facilitating precise treatment planning and improving patient prognoses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号