Reference dosimetry

参考剂量测定法
  • 文章类型: Journal Article
    背景:水体模需要执行参考剂量测定和光束质量测量,但没有关于此类体模的尺寸要求的公开研究。
    目的:调查,使用蒙特卡罗技术,用于参考剂量测定和/或测量光束质量说明符%d(10)x$\\%dd(10)_{\\sfx}$和TPR1020$TPR^{20}_{10}$的水体模的尺寸要求。
    方法:EGSnrc应用程序DOSXYZnrc用于计算D(10)$D(10)$,在入射10×10cm2$10的水模型中,在10cm深度处的每个入射通量的剂量,\\次\\,10\\,{\\rm{cm}}^{2}$光束,含60个Co$^{60}{\\rm{Co}}$或6个MV光子。水幻影尺寸从30×30×40厘米3$30不等,\\次\\,30\\,\\次\\,40\\,{\\\rm{cm}}^3$至15×15×22cm3$15\\,\\次\\,15\\,\\次\\,22\\,{\\rm{cm}}^3$,偶尔较小。%dd(10)x$\%dd(10)_{\\sfx}$和TPR1020$TPR^{20}_{10}典型的统计不确定性为0.03%。
    结果:对于大于20×20×25cm3$20\\的幻影,幻影尺寸仅有较小的影响,\\次\\,20\\,\\次\\,25\\,{\\rm{cm}}^3$。10×10cm2$10$10中10cm深度剂量校正表,\\次\\,10\\,{\\rm{cm}}^{2}$束60Co$^{60}{\\rm{Co}}$束或6个MV光子,对于60Co$^{60}{\\rm{Co}}$束入射到20×20×15cm3$20\\\\次\\,20\\,\\次\\,15\\,{\\rm{cm}}^3$幻影。使用方法A或方法B测量的TPR1020$TPR^{20}_{10}$值可能存在明显差异,特别是对于较小的幻影。它明确表明,在±$\\pm$0.15%内,TPR1020$TPR^{20}_{10}$30×30×30cm3$30\\,\\次\\,30\\,\\次\\,30\\,{\\rm{cm}}^3$使用方法A或B测量的体模与40到200cm之间的源探测器距离无关。
    结论:TG-51和IAEATRS-398参考剂量测定方案中推荐的体模尺寸足以进行准确的参考剂量测定,在某些情况下甚至是保守的。校正因子对于在较小体模中10cm深度处的剂量的精确测量是必要的,并且提供了这些因子。参考剂量测定本身不需要非常精确的光束质量说明符,但是为了指定光束稳定性和特性,重要的是指定体模尺寸以及用于TPR1020$TPR^{20}_{10}$测量的方法。
    BACKGROUND: Water phantoms are required to perform reference dosimetry and beam quality measurements but there are no published studies about the size requirements for such phantoms.
    OBJECTIVE: To investigate, using Monte Carlo techniques, the size requirements for water phantoms used in reference dosimetry and/or to measure the beam quality specifiers % d d ( 10 ) x $\\%dd(10)_{\\sf x}$ and T P R 10 20 $TPR^{20}_{10}$ .
    METHODS: The EGSnrc application DOSXYZnrc is used to calculate D ( 10 ) $D(10)$ , the dose per incident fluence at 10 cm depth in a water phantom irradiated by incident 10 × 10 cm 2 $10\\,\\times \\,10 \\, {\\rm {cm}}^{2}$   beams of 60 Co $^{60}{\\rm {Co}}$   or 6 MV photons. The water phantom dimensions are varied from 30 × 30 × 40 cm 3 $30 \\,\\times \\, 30 \\,\\times \\, 40 \\, {\\rm {cm}}^3$ to 15 × 15 × 22 cm 3 $15 \\,\\times \\, 15 \\,\\times \\, 22 \\, {\\rm {cm}}^3$ and occasionally smaller. The % d d ( 10 ) x $\\%dd(10)_{\\sf x}$ and T P R 10 20 $TPR^{20}_{10}$ values are also calculated with care being taken to distinguish T P R 10 20 $TPR^{20}_{10}$ results when using Method A (changing depth of water in phantom) and Method B (moving entire phantom). Typical statistical uncertainties are 0.03%.
    RESULTS: Phantom dimensions have only minor effects for phantoms larger than 20 × 20 × 25 cm 3 $20 \\,\\times \\, 20 \\,\\times \\, 25 \\, {\\rm {cm}}^3$ . A table of corrections to the dose at 10 cm depth in 10 × 10 cm 2 $10 \\,\\times \\, 10 \\, {\\rm {cm}}^{2}$   beams of 60 Co $^{60}{\\rm {Co}}$   or 6 MV photons are provided and range from no correction to 0.75% for a 60 Co $^{60}{\\rm {Co}}$  beam incident on a 20 × 20 × 15 cm 3 $20 \\,\\times \\, 20 \\,\\times \\, 15 \\, {\\rm {cm}}^3$ phantom. There can be distinct differences in the T P R 10 20 $TPR^{20}_{10}$ values measured using Method A or Method B, especially for smaller phantoms. It is explicitly demonstrated that, within ± $\\pm$ 0.15%, T P R 10 20 $TPR^{20}_{10}$ values for a 30 × 30 × 30 cm 3 $30 \\,\\times \\, 30 \\,\\times \\, 30 \\, {\\rm {cm}}^3$ phantom measured using Method A or B are independent of source detector distance between 40 and 200 cm.
    CONCLUSIONS: The phantom sizes recommended in the TG-51 and IAEA TRS-398 reference dosimetry protocols are adequate for accurate reference dosimetry and in some cases are even conservative. Correction factors are necessary for accurate measurement of the dose at 10 cm depth in smaller phantoms and these factors are provided. Very accurate beam quality specifiers are not required for reference dosimetry itself, but for specifying beam stability and characteristics it is important to specify phantom sizes and also the method used for T P R 10 20 $TPR^{20}_{10}$  measurements.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:在水热法中,通过测量辐射引起的温度升高来确定水的绝对剂量。在传统的水热量计中,温度探测器装在装满高纯度水的手工玻璃容器中,从而减轻辐射引起的杂质的外/吸热化学反应,否则会引入额外的热增益/损失,称为热缺陷。手工制作,这些玻璃容器可能有缺陷,有形状和设计限制,经常被倒序,而且可能非常昂贵。
    目的:这项工作的目的是确定3D打印的塑料容器的适用性,这些容器被进一步涂覆以用于水量热法应用,并研究其稳定性并表征其相关的热缺陷校正因子(khd)${k_{\\mathrm{hd}}})$。这种新颖的容器生产技术将允许成本有效地快速建造容器,该容器可以以高精度生产,并且设计对于当前的玻璃容器建造技术而言根本不实用。这反过来又使水量热法在许多新颖的辐射递送模式中的应用成为可能。例如,在GammaKnifeICON水热法中可能包括球形容器。
    方法:使用AccuraClearVue在SLA3D打印机中3D打印了八只血管。两个容器涂有ParyleneC,四个容器涂有ParyleneN。这些容器遵循的水量热法制备程序与我们传统的玻璃容器相同(即,同样的清洁程序,同样的高纯水,和相同的饱和程序与高纯度氢气)。使用我们在ElektaVersa中内置的内部水热计,使用6MV平坦无过滤器(FFF)和18MV梁,对每个容器的性能进行了表征。通过重复测量评价作为时间和累积剂量的函数的涂层稳定性。khd${k_{\\mathrm{hd}}}}\\;每个容器的$是通过与ExradinA1SL电离室的交叉比较确定的,该电离室具有与加拿大主要标准实验室的方向校准链接。
    结果:kHD${k_{\\mathrm{HD}}}\\;$在6MVFFF光束下,两个未涂层容器的差异为2.8%。涂有Parylene的容器对两种能量都产生了稳定且可重现的热缺陷。对于聚对二甲苯N和聚对二甲苯C涂层容器,总khd${k_{\\mathrm{hd}}}$分别为1.001±0.010和1.005±0.010。所有聚对二甲苯涂层容器均表示同意,在既定的不确定性中,在氢饱和玻璃容器系统中观察到的零热缺陷。ParyleneN血管的另一项长期研究(17天)显示,随着累积剂量和时间的增加,反应没有变化。聚对二甲苯N涂覆的容器的电子显微镜图像显示在重复照射后均匀完整的涂层。
    结论:未涂覆的3D打印容器对于水热法是不可行的,因为它表现出不稳定的容器依赖性热缺陷。然而,应用Parylene涂层可以稳定热缺陷,这表明涂层3D打印容器可能适用于水热法。这种方法有助于创建复杂的血管形状,可以使用3D打印有效地制造。
    BACKGROUND: In water calorimetry, absolute dose to water is determined by measuring radiation-induced temperature rises. In conventional water calorimeters, temperature detectors are housed in handmade glass vessels that are filled with high-purity water, thus mitigating radiation-induced exo/endothermic chemical reactions of impurities that would otherwise introduce additional heat gain/loss, known as heat defect. Being hand-crafted, these glass vessels may suffer from imperfections, have shape and design constraints, are often backordered, and can be prohibitively expensive.
    OBJECTIVE: The purpose of this work is to determine suitability of 3D-printed plastic vessels that are further coated for use in water calorimetry applications, and to study their stability and characterize their associated heat defect correction factor ( k hd ) ${k_{{\\mathrm{hd}}}})$ . This novel vessel production technique would allow for cost-effective rapid construction of vessels that can be produced with high accuracy and designs that are simply not practical with current glass vessel construction techniques. This in turn enables water calorimetry applications in many novel radiation delivery modalities, which may include spherical vessels in GammaKnife ICON water calorimetry as an example.
    METHODS: Eight vessels were 3D-printed using Accura ClearVue in an SLA 3D-printer. Two vessels were coated with Parylene C and four were coated with Parylene N. The water calorimetry preparation procedures followed for these vessels was identical to that of our traditional glass-vessels (i.e., same cleaning procedures, same high purity water, and same saturation procedures with high purity hydrogen gas). The performance of each vessel was characterized using our in-house built water calorimeter in an Elekta Versa using both 6 MV flattening filter-free (FFF) and 18 MV beams. The stability of the coating as function of time and accumulated dose was evaluated through repeated measurements. k hd ${k_{{\\mathrm{hd}}}}\\;$ of each vessel was determined through cross-comparisons against an Exradin A1SL ionization chamber with direction calibration link to Canada\'s primary standard laboratory.
    RESULTS: k HD ${k_{{\\mathrm{HD}}}}\\;$ of the two uncoated vessels differed by 2.8% under a 6 MV FFF beam. Vessels coated with Parylenes resulted in a stable and reproducible heat defect for both energies. An overall k hd ${k_{{\\mathrm{hd}}}}$ of 1.001 ± 0.010 and 1.005 ± 0.010 were obtained for Parylene N and Parylene C coated vessels respectively. All Parylene coated vessels showed agreement, within the established uncertainties, to the zero-heat defect observed in a hydrogen-saturated glass vessel system. An additional long-term study (17 days) of a Parylene N vessel showed no change in response with accumulated dose and time. Electron microscopy images of a Parylene N coated vessel showed a uniform intact coating after repeated irradiations.
    CONCLUSIONS: An uncoated 3D-printed vessel is not viable for water calorimetry because it exhibits an unstable vessel-dependent heat defect. However, applying a Parylene coating stabilizes the heat defect, suggesting that coated 3D-printed vessels may be suitable for use in water calorimetry. This method facilitates the creation of intricate vessel shapes, which can be efficiently manufactured using 3D printing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的
在这项实验工作中,我们比较了使用四个电离室(IC)确定水的吸收剂量,PTW-34045高级马库斯,aPTW-34001Roos,IBA-PPC05和PTW-30012农民,在一个连续和两个脉冲扫描质子束中在相同条件下辐照。
方法
IC被定位在水模型中的2cm深度,在四个方形场单能量扫描质子束中,标称能量在80MeV和220MeV之间,并且在10x10x10cm3剂量立方体的中间,集中在水中10cm或12.5cm深度。当定位平面平行(PP)IC和圆柱形IC时,考虑了入射窗的水等效厚度(WET)和有效测量点,分别。为了减少不确定性,所有IC均在同一主要标准实验室进行校准.我们使用了IAEATRS-398调查中IC的光束质量(kQ)校正因子,新计算的蒙特卡洛(MC)值以及预期的IAEATRS-398更新建议。使用TRS-398和新建议的kQ值,四个IC之间的剂量差异介于1.5%和3.7%之间。腔室之间的分布随着新的kQ值而减小。在其余IC和IBA-PPC05IC之间观察到最大的差异,用IBA-PPC05测量较低剂量。
意义
我们提供了比较不同质子束质量下不同类型的腔室的实验数据。在IC之间观察到的剂量差异似乎与kQ值测定中的不一致性有关。对于PPIC,MC研究考虑了入口窗户而不是WET的物理厚度。对于IBA-PPC05,壁材料引起的额外能量损失不可忽略,并且可能部分解释了为此IC确定的低kQ值。要解决此不一致并对MC值进行基准测试,需要使用量热法测量的kQ值。
    Objective. In this experimental work we compared the determination of absorbed dose to water using four ionization chambers (ICs), a PTW-34045 Advanced Markus, a PTW-34001 Roos, an IBA-PPC05 and a PTW-30012 Farmer, irradiated under the same conditions in one continuous- and in two pulsed-scanned proton beams.Approach. The ICs were positioned at 2 cm depth in a water phantom in four square-field single-energy scanned-proton beams with nominal energies between 80 and 220 MeV and in the middle of 10 × 10 × 10 cm3dose cubes centered at 10 cm or 12.5 cm depth in water. The water-equivalent thickness (WET) of the entrance window and the effective point of measurement was considered when positioning the plane parallel (PP) ICs and the cylindrical ICs, respectively. To reduce uncertainties, all ICs were calibrated at the same primary standards laboratory. We used the beam quality (kQ) correction factors for the ICs under investigation from IAEA TRS-398, the newly calculated Monte Carlo (MC) values and the anticipated IAEA TRS-398 updated recommendations.Main results. Dose differences among the four ICs ranged between 1.5% and 3.7% using both the TRS-398 and the newly recommendedkQvalues. The spread among the chambers is reduced with the newlykQvalues. The largest differences were observed between the rest of the ICs and the IBA-PPC05 IC, obtaining lower dose with the IBA-PPC05.Significance. We provide experimental data comparing different types of chambers in different proton beam qualities. The observed dose differences between the ICs appear to be related to inconsistencies in the determination of thekQvalues. For PP ICs, MC studies account for the physical thickness of the entrance window rather than the WET. The additional energy loss that the wall material invokes is not negligible for the IBA-PPC05 and might partially explain the lowkQvalues determined for this IC. To resolve this inconsistency and to benchmark MC values,kQvalues measured using calorimetry are needed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    近年来,MR-Linac,配备磁共振(MR)成像的放射治疗线性加速器(直线加速器),已部署在日本各地的临床设施中。因为MR直线加速器的磁场,会影响电离室的剂量分布和剂量响应,使用电离室对水的吸收剂量进行常规参考剂量测定变得不切实际。因此,在MR-Linac的参考剂量测定中应考虑磁场效应。尽管已经有许多研究对此问题进行了深入研究,并且已经提出了几种磁场校正方法来扩展传统的形式主义,MR-Linac参考剂量测定的实用方案仍然难以捉摸。这篇综述的目的如下:(i)总结和评估文献和现有数据集,并确定突出该主题未来研究领域的任何差距;(ii)阐明与磁场中电离室剂量测定相关的剂量测定挑战;(iii)根据现有文献和数据集提出MR-Linac参考剂量测定的形式主义。这篇综述侧重于基于市售MR-Linacs和数据集的研究,专门为参考类圆柱形离子室。
    In recent years, MR-Linac, a radiotherapy linear accelerator (linac) equipped with magnetic resonance (MR) imaging, has been deployed in clinical facilities across Japan. Because of the magnetic field of MR-Linac, which can affect the dose distributions and dose response of ionization chambers, conventional reference dosimetry for absorbed dose to water using an ionization chamber becomes impractical. Consequently, the magnetic field effect should be considered in the reference dosimetry for MR-Linac. Although numerous studies have delved into this matter and several magnetic field correction methods have been proposed to extend the conventional formalism, a practical protocol for reference dosimetry for MR-Linac remains elusive.The purpose of this review are as follows: (i) to summarize and evaluate literature and existing datasets as well as identify any gaps that highlight areas for the future research on this topic; (ii) to elucidate dosimetric challenges associated with ionization chamber dosimetry in magnetic fields; and (iii) to propose a formalism for reference dosimetry for MR-Linac based on available literature and datasets. This review focuses on studies based on commercially available MR-Linacs and datasets, specifically tailored for reference-class cylindrical ion chambers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:这项研究的目的是使用蒙特卡洛(MC)方法直接计算0.35TMR直线加速器的四个圆柱形IC的[公式:见正文]校正因子。
    方法:采用了经过验证的0.35TMR直线加速器的TOPAS/GEANT4MC头部模型。与MR兼容的ExradinA12,A1SL,考虑到空气腔中的死体积,对A26和A28圆柱形IC进行了建模。[公式:见正文]确定初始电子能量为5-7MeV的校正因子。针对横向平面中的所有四个角取向计算校正因子。还研究了0.35T磁场对IC响应的影响。
    结果:A12,A1SL,A26,A28IC为1.10%,2.17%,0.81%,和1.75%,分别,考虑所有的角度取向。当检测器沿磁场方向以0°和180°角对准时,磁场依赖性<1%,并且最大[公式:参见正文]校正<2%。对于正交取向,A12IC的过度响应高达5.40%。对于以90°和270°角对准的A28IC,注意到高达8.30%的响应不对称性。
    结论:IC的平行方向,关于磁场,推荐用于MRgRT中的参考剂量测定。IC信号中的过响应和欠响应均注意到正交方向,高度依赖于空腔直径,空腔长度,和死体积。
    OBJECTIVE: The purpose of this study was to directly calculate [Formula: see text] correction factors for four cylindrical ICs for a 0.35 T MR-linac using the Monte Carlo (MC) method.
    METHODS: A previously-validated TOPAS/GEANT4 MC head model of the 0.35 T MR-linac was employed. The MR-compatible Exradin A12, A1SL, A26, and A28 cylindrical ICs were modeled considering the dead volume in the air cavity. The [Formula: see text] correction factor was determined for initial electron energies of 5-7 MeV. The correction factor was calculated for all four angular orientations in the lateral plane. The impact of the 0.35 T magnetic field on the IC response was also investigated.
    RESULTS: The maximum beam quality dependence in the [Formula: see text] exhibited by the A12, A1SL, A26, and A28 ICs was 1.10 %, 2.17 %, 0.81 %, and 1.75 %, respectively, considering all angular orientations. The magnetic field dependence was < 1 % and the maximum [Formula: see text] correction was < 2 % when the detector was aligned along the direction of the magnetic field at 0° and 180° angles. The A12 IC over-responded up to 5.40 % for the orthogonal orientation. An asymmetry in the response of up to 8.30 % was noted for the A28 IC aligned at 90° and 270° angles.
    CONCLUSIONS: A parallel orientation for the IC, with respect to the magnetic field, is recommended for reference dosimetry in MRgRT. Both over and under-response in the IC signal was noted for the orthogonal orientations, which is highly dependent on the cavity diameter, cavity length, and the dead volume.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目标: McEwen等人,(DOI:10.1118/1.4866223)在TG-51协议中引入了一个新的factorPrpin附录,以考虑光子束在探测器体积上的径向剂量分布,主要是在平坦化无滤波器(FFF)束中。研究了其在非FFF光束参考剂量测定中的扩展。方法:使用Sudhyadhom等人的简化版本(DOI:10.1118/1.4941691)测量了带有两个检测器的Elekta和VarianFFF光束的Prp;PTW-30013和Exradin-A12离子室。对于径向剂量校正因子,离子室被放置在一个小的水模型中,中心轴位置被设置在治疗台上敏感体积的中心,并通过相对于初始(零)位置将工作台从-90度旋转15度至+90度进行研究。&#xD;主要结果:&#xD;Prp的大小随机器变化很小,对于6FFF和10FFF,探测器和光束能量分别为1.003±0.0005和1.005±0.0005,分别。使用Exradin-A12和PTW-30013检测器的Elekta机器的径向各向异性幅度在(0.9995±0.0011至1.0015±0.0010)和(0.9998±0.0007至1.0015±0.0010)的范围内,分别。同样,对于带有Exradin-A12和PTW-30013离子室的Varian机器,幅度在(1.0004±0.0010至1.0018±0.0018)和(1.0006±0.0009至1.0027±0.0007)的范围内,分别。
    结论:6FFF和10FFF的Prp≤0.3%和0.5%,分别。规则射束中的径向剂量校正因子也不影响剂量测定,其中最大量值为±0.2%,其在实验不确定性内。 .
    Objectives.In an addendum to AAPM TG-51 protocol, McEwenet al, (DOI:10.1118/1.4866223) introduced a new factorPrpto account for the radial dose distribution of the photon beam over the detector volume mainly in flattening filter free (FFF) beams.Prpand its extension to non-FFF beam reference dosimetry is investigated to see its impact in a clinical situation.Approches.ThePrpwas measured using simplified version of Sudhyadhomet al(DOI:10.1118/1.4941691) for Elekta and Varian FFF beams with two commonly used calibration detectors; PTW-30013 and Exradin-A12 ion chambers after acquiring high resolution profiles in detectors cardinal coordinates. For radial dose correction factor, the ion chambers were placed in a small water phantom and the central axis position was set to center of the sensitive volume on the treatment table and was studied by rotating the table by 15-degree interval from -90 to +90 degrees with respect to the initial (zero) position.Main results.The magnitude ofPrpvaries very little with machine, detector and beam energies to a value of 1.003 ± 0.0005 and 1.005 ± 0.0005 for 6FFF and 10FFF, respectively. The radial anisotropy for the Elekta machine with Exradin-A12 and PTW-30013 detector the magnitudes are in the range of (0.9995±0.0011 to 1.0015±0.0010) and (0.9998±0.0007 to 1.0015±0.0010), respectively. Similarly, for the Varian machine with Exradin-A12 and PTW-30013 ion chambers, the magnitudes are in the range of (1.0004±0.0010 to 1.0018±0.0018) and (1.0006±0.0009 to 1.0027±0.0007), respectively.Significance.ThePrpis ≤ 0.3% and 0.5% for 6FFF and 10FFF, respectively. The radial dose correction factor in regular beams also does not impact the dosimetry where the maximum magnitude is ±0.2% which is within experimental uncertainty.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:电离室,主要用于光束校准和参考剂量测定,可以在脉冲高剂量率质子束中表现出高复合效应。本文的研究目的是:第一,表征新设计的非对称束监测室(ABMC)在100至226MeV脉冲高剂量率每个脉冲扫描质子束的线性响应;其次,用PPC05(IBA剂量测定)平面平行电离室校准ABMC,并与自制法拉第杯(FC)的校准进行比较。 方法:用FC和PTW60019microDiamond探测器评估ABMC响应线性。关于基于ionometry的ABMC校准,从理论上评估了重组因子,然后在数字上,最后通过ks饱和曲线在水中对平面平行电离室PPC05(IBA剂量测定法)进行实验测量。最后,还使用FC实现了ABMC校准,并与7种能量的离子测量法进行了比较。&#xD;主要结果:线性测量表明,新ABMC设计中的重组损失在机器剂量率的整个范围内都得到了很好的考虑。两电压法不适用于重组校正,但需要Jaffé的地块分析,强调目前原子能机构TRS-398参考议定书的局限性。关于ABMC校准,对于所研究的能量,基于法拉第杯的吸收剂量估计和基于PPC05的吸收剂量估计相差小于6.3%。 意义:到目前为止,对于每个脉冲脉冲扫描质子束的临床高剂量率,没有参考剂量测定方案的更新可用于估计电离室中的吸收剂量。这项工作提出了对新的ABMC设计的验证,一种考虑基于离子测量的ABMC校准的重组效应的方法,并与这种类型的质子束中的法拉第杯剂量估计进行比较。
    Objective. Ionization chambers, mostly used for beam calibration and for reference dosimetry, can show high recombination effects in pulsed high dose rate proton beams. The aims of this paper are: first, to characterize the linearity response of newly designed asymmetrical beam monitor chambers (ABMC) in a 100-226 MeV pulsed high dose rate per pulse scanned proton beam; and secondly, to calibrate the ABMC with a PPC05 (IBA Dosimetry) plane parallel ionization chamber and compare to calibration with a home-made Faraday cup (FC).Approach. The ABMC response linearity was evaluated with both the FC and a PTW 60019 microDiamond detector. Regarding ionometry-based ABMC calibration, recombination factors were evaluated theoretically, then numerically, and finally experimentally measured in water for a plane parallel ionization chamber PPC05 (IBA Dosimetry) throughkssaturation curves. Finally, ABMC calibration was also achieved with FC and compared to the ionometry method for 7 energies.Main results. Linearity measurements showed that recombination losses in the new ABMC design were well taken into account for the whole range of the machine dose rates. The two-voltage-method was not suitable for recombination correction, but Jaffé\'s plots analysis was needed, emphasizing the current IAEA TRS-398 reference protocol limitations. Concerning ABMC calibration, FC based absorbed dose estimation and PPC05-based absorbed dose estimation differ by less than 6.3% for the investigated energies.Significance.So far, no update on reference dosimetry protocols is available to estimate the absorbed dose in ionization chambers for clinical high dose rate per pulse pulsed scanned proton beams. This work proposes a validation of the new ABMC design, a method to take into account the recombination effect for ionometry-based ABMC calibration and a comparison with FC dose estimation in this type of proton beams.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:磁共振(MR)引导的放射治疗系统中存在的静磁场会影响充满空气的电离室中的剂量沉积和带电粒子收集。因此,准确量化磁场对电离室响应的影响对于输出校准至关重要。已经提出了用于磁场中参考剂量测定的形式主义,其中磁场质量转换因子kB,Q被定义为考虑磁场对辐射检测器的组合影响。kB的测定,文献中的Q集中在蒙特卡罗模拟研究上,实验验证仅限于少数电离室模型。
    目的:本研究的目的是通过实验测量kB,Q两种市售MR引导放射治疗系统中的11个电离室模型:ElektaUnity和ViewRayMRIdian。
    方法:本研究对11个电离室模型进行了表征:ExradinA12,A12S,A28,和A26,PTWT31010,T31021,和T31022,和IBAFC23-C,CC25、CC13和CC08。实验方法测量kB,Q对参考ExradinA1SL腔室进行了交叉校准。对于平行于磁场定位的参考A1SL腔室,测量水的吸收剂量,其质心放置在机器等中心处,在该深度处的水中深度为10×10cm2场大小。随后在相同的测量点用测试室测量输出。KB,测试室的Q计算为参考剂量与测试室输出的比率。在每个MR引导放射治疗系统的每个腔室中重复此过程。对于高场1.5TElektaUnity系统,KB的依赖性,通过围绕机器等中心旋转腔室来量化腔室相对于磁场的取向上的Q。
    结果:测量kB,我们的电离室模型测试数据集的Q值范围为0.991至1.002,ElektaUnity和ViewRayMRIdian的0.995至1.004,分别,用KB,Q随着腔室敏感体积的增加而趋于增加。测量kB,Q值与已发布的蒙特卡洛模拟数据和可用的实验数据在不确定性范围内基本一致。KB,对于与磁场平行或反平行的电离室方向,与单位的Q偏差被最小化。在垂直方向观察到的偏差增加。磁场质量转换因子实验测定的总体不确定度(k=1),KB,ElektaUnity和ViewRayMRIdian系统的Q分别为0.71%和0.72%,分别。
    结论:对于高场MR直线加速器,电离室性能表征为相对于磁场的角度方向变化,证实了输出校准的理想方向是平行的。对于大多数这些腔室模型,这项研究代表了临床MR直线加速器束中的腔室性能的首次实验表征。这是迈向MR引导放射治疗系统和测量的kB的精确输出校准的关键一步。Q值将是即将到来的MR直线加速器参考剂量测定协议的重要参考数据源。
    BACKGROUND: The static magnetic field present in magnetic resonance (MR)-guided radiotherapy systems can influence dose deposition and charged particle collection in air-filled ionization chambers. Thus, accurately quantifying the effect of the magnetic field on ionization chamber response is critical for output calibration. Formalisms for reference dosimetry in a magnetic field have been proposed, whereby a magnetic field quality conversion factor kB,Q is defined to account for the combined effects of the magnetic field on the radiation detector. Determination of kB,Q in the literature has focused on Monte Carlo simulation studies, with experimental validation limited to only a few ionization chamber models.
    OBJECTIVE: The purpose of this study is to experimentally measure kB,Q for 11 ionization chamber models in two commercially available MR-guided radiotherapy systems: Elekta Unity and ViewRay MRIdian.
    METHODS: Eleven ionization chamber models were characterized in this study: Exradin A12, A12S, A28, and A26, PTW T31010, T31021, and T31022, and IBA FC23-C, CC25, CC13, and CC08. The experimental method to measure kB,Q utilized cross-calibration against a reference Exradin A1SL chamber. Absorbed dose to water was measured for the reference A1SL chamber positioned parallel to the magnetic field with its centroid placed at the machine isocenter at a depth of 10 cm in water for a 10 × 10 cm2 field size at that depth. Output was subsequently measured with the test chamber at the same point of measurement. kB,Q for the test chamber was computed as the ratio of reference dose to test chamber output, with this procedure repeated for each chamber in each MR-guided radiotherapy system. For the high-field 1.5 T Elekta Unity system, the dependence of kB,Q on the chamber orientation relative to the magnetic field was quantified by rotating the chamber about the machine isocenter.
    RESULTS: Measured kB,Q values for our test dataset of ionization chamber models ranged from 0.991 to 1.002, and 0.995 to 1.004 for the Elekta Unity and ViewRay MRIdian, respectively, with kB,Q tending to increase as the chamber sensitive volume increased. Measured kB,Q values largely agreed within uncertainty to published Monte Carlo simulation data and available experimental data. kB,Q deviation from unity was minimized for ionization chamber orientation parallel or antiparallel to the magnetic field, with increased deviations observed at perpendicular orientations. Overall (k = 1) uncertainty in the experimental determination of the magnetic field quality conversion factor, kB,Q was 0.71% and 0.72% for the Elekta Unity and ViewRay MRIdian systems, respectively.
    CONCLUSIONS: For a high-field MR-linac, the characterization of ionization chamber performance as angular orientation varied relative to the magnetic field confirmed that the ideal orientation for output calibration is parallel. For most of these chamber models, this study represents the first experimental characterization of chamber performance in clinical MR-linac beams. This is a critical step toward accurate output calibration for MR-guided radiotherapy systems and the measured kB,Q values will be an important reference data source for forthcoming MR-linac reference dosimetry protocols.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:法拉第杯(FC)有助于非常干净地测量从具有窄笔形光束的临床点扫描喷嘴中出现的质子注量。对于高剂量率输送模式和蒙特卡洛(MC)剂量引擎的源模型,使用FC似乎是一个有吸引力的选择。然而,先前的研究显示,电离室(IC)的参考剂量测定与基于FC的剂量测定之间存在3%-6%的差异。这阻止了FC在质子治疗中用于剂量测定的广泛使用。
    目的:当前的研究旨在弥合点扫描治疗头提供的质子场的FC剂量测定和IC剂量测定之间的差距。特别是,介绍了一种评估FC测量值的新方法。
    方法:制定了一致性检查,它利用了能量平衡和互易定理。测量数据包括宽度约为28.5cm的准单色场的吸收剂量的中心轴深度分布和具有单个斑点的倒数场的FC测量。这些数据由能量范围表的查找补充,变形的平均Q值,以及被中子和光子带走的逃逸能量。后者的数据是通过MC模拟计算的,反过来,通过测量远端剂量尾部和中子场外剂量来验证。为了比较,采用传统的FC评估方法,计算吸收剂量的产品的流量和停止能力。将FC测量的结果与标准剂量测定协议和改进的参考剂量测定方法进行比较。
    结果:常规的基于FC的剂量测定法与根据标准剂量测定协议的基于IC的剂量测定法之间的偏差对于100MeV场为-4.7(±3.3)%,对于200MeV为-3.6(±3.5)%,从而在报告的不确定性范围内达成一致。通过采用最先进的参考剂量测定方法,可以将偏差降低到-4.0(±2.9)%和-3.0(±3.1)%。使用能量平衡的替代方法使用最先进的剂量测定法仅给出-1.9%(100MeV)和-2.6%(200MeV)的偏差。这种新方法的标准不确定度估计为约2%。
    结论:已经建立了一种替代概念来确定具有FC的单能质子场的吸收剂量。它消除了传统的基于FC的方法对停止功率和二次离子的MC模拟的强烈依赖性,根据手头的研究,这是低估吸收剂量的主要原因。在未来的研究中,可能会减少对新方法不确定性的一些贡献。这将允许常规剂量测定程序的精确一致性测试。
    BACKGROUND: A Faraday cup (FC) facilitates a quite clean measurement of the proton fluence emerging from clinical spot-scanning nozzles with narrow pencil-beams. The utilization of FCs appears to be an attractive option for high dose rate delivery modes and the source models of Monte-Carlo (MC) dose engines. However, previous studies revealed discrepancies of 3%-6% between reference dosimetry with ionization chambers (ICs) and FC-based dosimetry. This has prevented the widespread use of FCs for dosimetry in proton therapy.
    OBJECTIVE: The current study aims at bridging the gap between FC dosimetry and IC dosimetry of proton fields delivered with spot-scanning treatment heads. Particularly, a novel method to evaluate FC measurements is introduced.
    METHODS: A consistency check is formulated, which makes use of the energy balance and the reciprocity theorem. The measurement data comprise central-axis depth distributions of the absorbed dose of quasi-monochromatic fields with a width of about 28.5 cm and FC measurements of the reciprocal fields with a single spot. These data are complemented by a look-up of energy-range tables, the average Q-value of transmutations, and the escape energy carried away by neutrons and photons. The latter data are computed by MC simulations, which in turn are validated with measurements of the distal dose tail and neutron out-of-field doses. For comparison, the conventional approach of FC evaluation is performed, which computes absorbed dose from the product of fluence and stopping power. The results from the FC measurements are compared with the standard dosimetry protocols and improved reference dosimetry methods.
    RESULTS: The deviation between the conventional FC-based dosimetry and the IC-based one according to standard dosimetry protocols was -4.7 ( ± $\\pm$ 3.3)% for a 100 MeV field and -3.6 ( ± $\\pm$ 3.5)% for 200 MeV, thereby agreeing within the reported uncertainties. The deviations could be reduced to -4.0 ( ± $\\pm$ 2.9)% and -3.0 ( ± $\\pm$ 3.1)% by adopting state-of-the-art reference dosimetry methods. The alternative approach using the energy balance gave deviations of only -1.9% (100 MeV) and -2.6% (200 MeV) using state-of-the-art dosimetry. The standard uncertainty of this novel approach was estimated to be about 2%.
    CONCLUSIONS: An alternative concept has been established to determine the absorbed dose of monoenergetic proton fields with an FC. It eliminates the strong dependence of the conventional FC-based approach on the MC simulation of the stopping-power and of the secondary ions, which according to the study at hand is the major contributor to the underestimation of the absorbed dose. Some contributions to the uncertainty of the novel approach could potentially be reduced in future studies. This would allow for accurate consistency tests of conventional dosimetry procedures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    放射治疗是超过50%癌症患者治疗的一部分。其功效受限于对健康组织的放射性毒性。FLASH-RT基于超高剂量率(UHDR)和非常短的治疗时间可大大降低正常组织毒性的生物学效应,同时保留抗肿瘤作用。尽管有许多积极的临床前结果,由于缺乏对UHDR光束的准确剂量学,因此阻碍了FLASH-RT向临床的翻译。迄今为止,放射变色胶片通常用于剂量评估,但具有冗长且繁琐的读出程序的缺点。在这项工作中,我们在剂量率独立性方面研究了2DOSL系统与辐射变色胶片剂量学的等效性。两个系统的比较是使用ElectronFlash直线加速器完成的。我们调查了(1)模态变化对剂量率的依赖性,(2)脉冲重复频率,(3)脉冲长度和(4)源到表面的距离。此外,我们通过场尺寸测量比较了2D特征。OSL校准显示可在常规模式和UHDR模式之间转移。两种系统同样独立于平均剂量率,脉冲长度和瞬时剂量率。OSL系统在3西格玛内的田间大小测定中显示出等效。我们展示了2DOSL系统的有希望的性质,可作为UHDR电子束中辐射变色膜的替代品。然而,需要更深入的表征来评估其全部潜力。
    Radiotherapy is part of the treatment of over 50% of cancer patients. Its efficacy is limited by the radiotoxicity to the healthy tissue. FLASH-RT is based on the biological effect that ultra-high dose rates (UHDR) and very short treatment times strongly reduce normal tissue toxicity, while preserving the anti-tumoral effect. Despite many positive preclinical results, the translation of FLASH-RT to the clinic is hampered by the lack of accurate dosimetry for UHDR beams. To date radiochromic film is commonly used for dose assessment but has the drawback of lengthy and cumbersome read out procedures. In this work, we investigate the equivalence of a 2D OSL system to radiochromic film dosimetry in terms of dose rate independency. The comparison of both systems was done using the ElectronFlash linac. We investigated the dose rate dependence by variation of the (1) modality, (2) pulse repetition frequency, (3) pulse length and (4) source to surface distance. Additionally, we compared the 2D characteristics by field size measurements. The OSL calibration showed transferable between conventional and UHDR modality. Both systems are equally independent of average dose rate, pulse length and instantaneous dose rate. The OSL system showed equivalent in field size determination within 3 sigma. We show the promising nature of the 2D OSL system to serve as alternative for radiochromic film in UHDR electron beams. However, more in depth characterization is needed to assess its full potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号