Redox signaling

氧化还原信号
  • 文章类型: Journal Article
    急性肾损伤(AKI)和慢性肾脏病(CKD)是全球健康负担,患病率不断上升。它们与心血管功能障碍的双向关系,表现为3型和4型心肾综合征(CRS),强调了这些重要器官系统的相互联系和相互依存。肾脏和心脏都严重依赖线粒体功能。这种细胞器目前被认为是信号通路的枢纽,重点是谷胱甘肽(GSH)介导的氧化还原调节。线粒体功能障碍,包括受损的生物能学,氧化还原,和生物发生途径,对AKI向CKD的发展以及CRS类型3和4的发展至关重要。这篇综述深入研究了AKI中的代谢重编程和线粒体氧化还原信号和生物发生改变。CKD,和CRS。我们研究了在这些条件下涉及GSH氧化还原信号和AMP激活的蛋白激酶(AMPK)-沉默酶(SIRT)1/3-过氧化物酶体增殖物激活的受体-γ共激活因子(PGC-1α)轴的病理生理机制。此外,我们探讨了GSH合成诱导剂在减轻这些线粒体功能障碍方面的治疗潜力,以及它们对炎症和CKD和CRS3型和4型进展的影响。
    Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    活性氧(ROS)是指分子氧的各种衍生物,在调节多种生理和病理过程中起着至关重要的作用。过量的ROS水平会导致氧化应激,导致细胞损伤甚至细胞死亡.然而,适度升高的ROS水平可以介导氧化还原敏感蛋白的氧化翻译后修饰(oxPTMs),从而影响蛋白质功能并调节各种细胞信号传导途径。在oxPTM中,ROS诱导的可逆蛋白质次磺酰化代表用于感测氧化还原信号的半胱氨酸氧化的初始形式。在这次审查中,我们将总结这一发现,化学形成,以及蛋白质磺酰基化的检测方法。此外,我们将重点介绍蛋白质磺酰化在各种疾病中的作用的最新发现,包括血栓性疾病,糖尿病,心血管疾病,神经退行性疾病,和癌症。
    Reactive Oxygen Species (ROS) refer to a variety of derivatives of molecular oxygen that play crucial roles in regulating a wide range of physiological and pathological processes. Excessive ROS levels can cause oxidative stress, leading to cellular damage and even cell demise. However, moderately elevated levels of ROS can mediate the oxidative post-translational modifications (oxPTMs) of redox-sensitive proteins, thereby affecting protein functions and regulating various cellular signaling pathways. Among the oxPTMs, ROS-induced reversible protein sulfenylation represents the initial form of cysteine oxidation for sensing redox signaling. In this review, we will summarize the discovery, chemical formation, and detection approaches of protein sulfenylation. In addition, we will highlight recent findings for the roles of protein sulfenylation in various diseases, including thrombotic disorders, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质磷酸化的信号依赖性变化对于在巨噬细胞激活期间实现转录和代谢的协调至关重要。然而,乙酰化在巨噬细胞激活过程中信号转导中的作用仍然不清楚。这里,我们确定氧化还原信号调节因子过氧化物氧还蛋白1(PRDX1)作为赖氨酸乙酰转移酶MOF的底物。MOF在赖氨酸197处将PRDX1乙酰化,从而防止过氧化,从而在胁迫下保持其活性。PRDX1K197ac响应炎症信号,在用细菌脂多糖(LPSs)刺激的小鼠巨噬细胞中迅速降低,而白细胞介素(IL)-4或IL-10则没有。LPS诱导的PRDX1K197ac的减少增加了细胞过氧化氢的积累并增加了ERK1/2,而不是p38或AKT,磷酸化。同时,PRDX1K197ac减少刺激糖酵解,增强H3丝氨酸28磷酸化,并最终增强促炎介质如IL-6的产生。我们的工作揭示了氧化还原蛋白乙酰化在炎症巨噬细胞激活过程中信号转导和协调代谢和转录程序中的调节作用。
    Signaling-dependent changes in protein phosphorylation are critical to enable coordination of transcription and metabolism during macrophage activation. However, the role of acetylation in signal transduction during macrophage activation remains obscure. Here, we identify the redox signaling regulator peroxiredoxin 1 (PRDX1) as a substrate of the lysine acetyltransferase MOF. MOF acetylates PRDX1 at lysine 197, preventing hyperoxidation and thus maintaining its activity under stress. PRDX1 K197ac responds to inflammatory signals, decreasing rapidly in mouse macrophages stimulated with bacterial lipopolysaccharides (LPSs) but not with interleukin (IL)-4 or IL-10. The LPS-induced decrease of PRDX1 K197ac elevates cellular hydrogen peroxide accumulation and augments ERK1/2, but not p38 or AKT, phosphorylation. Concomitantly, diminished PRDX1 K197ac stimulates glycolysis, potentiates H3 serine 28 phosphorylation, and ultimately enhances the production of pro-inflammatory mediators such as IL-6. Our work reveals a regulatory role for redox protein acetylation in signal transduction and coordinating metabolic and transcriptional programs during inflammatory macrophage activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氧化平衡在生理稳态中起着关键作用,和许多疾病,特别是与年龄有关的条件,与氧化失衡密切相关。虽然氧化调节在各种疾病中的战略作用已经确立,氧化应激在动脉粥样硬化中的具体参与仍然难以捉摸.动脉粥样硬化是一种以动脉内斑块形成为特征的慢性炎性疾病。血管组织氧化状态的改变与发病有关,programming,和动脉粥样硬化的结果。这篇综述探讨了氧化还原信号在动脉粥样硬化中的作用。包括其对血脂异常等危险因素的影响,高血糖症,炎症,和不健康的生活方式,随着失调,血管内稳态,免疫系统相互作用,和治疗方面的考虑。了解氧化还原信号转导和氧化还原信号的调节将为动脉粥样硬化的发病机理提供有价值的见解,并指导新的治疗策略的开发。
    Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    过氧化物酶是水通道蛋白的一个专门的子集,它们是主要已知的促进水跨细胞膜运输的完整膜蛋白。除了经典的水运输功能,过氧化物酶具有运输过氧化氢(H2O2)的独特能力,参与各种细胞信号传导途径和氧化应激反应调节的活性氧。H2O2水平的调节对于维持细胞稳态至关重要,和过氧化物酶通过调节其细胞内和细胞外浓度在这一过程中起重要作用。这种促进H2O2通过的能力将过氧化物酶定位为氧化还原生物学和细胞信号传导的关键参与者,对理解和治疗与氧化应激和炎症相关的各种疾病具有重要意义。这篇综述提供了关于过氧化物酶的生理作用及其在疾病中的意义的最新信息。强调它们在失调的条件下作为新型生物标志物和药物靶标的潜力,比如炎症和癌症。
    Peroxiporins are a specialized subset of aquaporins, which are integral membrane proteins primarily known for facilitating water transport across cell membranes. In addition to the classical water transport function, peroxiporins have the unique capability to transport hydrogen peroxide (H2O2), a reactive oxygen species involved in various cellular signaling pathways and regulation of oxidative stress responses. The regulation of H2O2 levels is crucial for maintaining cellular homeostasis, and peroxiporins play a significant role in this process by modulating its intracellular and extracellular concentrations. This ability to facilitate the passage of H2O2 positions peroxiporins as key players in redox biology and cellular signaling, with implications for understanding and treating various diseases linked to oxidative stress and inflammation. This review provides updated information on the physiological roles of peroxiporins and their implications in disease, emphasizing their potential as novel biomarkers and drug targets in conditions where they are dysregulated, such as inflammation and cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核因子类红细胞相关因子2(Nrf2)对于控制细胞氧化还原稳态至关重要。激活时,Nrf2通过几个编码抗氧化和解毒酶的基因的表达引发细胞保护作用。Nrf2还可以通过增加NADPH再生谷胱甘肽的可用性来通过戊糖磷酸途径改善抗氧化剂防御。微阵列和全基因组定位分析已经鉴定出许多Nrf2靶基因,超出了与其氧化还原调节能力相关的基因。Nrf2调节几种中间代谢途径,并参与癌细胞代谢重编程,导致恶性表型。Nrf2还调节线粒体呼吸的底物利用。在这里,我们回顾了支持Nrf2在能量代谢和线粒体功能调节中的重要作用的实验证据。
    Nuclear factor erythroid-2-related factor 2 (Nrf2) is essential for the control of cellular redox homeostasis. When activated, Nrf2 elicits cytoprotective effects through the expression of several genes encoding antioxidant and detoxifying enzymes. Nrf2 can also improve antioxidant defense via the pentose phosphate pathway by increasing NADPH availability to regenerate glutathione. Microarray and genome-wide localization analyses have identified many Nrf2 target genes beyond those linked to its redox-regulatory capacity. Nrf2 regulates several intermediary metabolic pathways and is involved in cancer cell metabolic reprogramming, contributing to malignant phenotypes. Nrf2 also modulates substrate utilization for mitochondrial respiration. Here we review the experimental evidence supporting the essential role of Nrf2 in the regulation of energy metabolism and mitochondrial function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们询问线粒体的急性氧化还原信号是否与胰腺β细胞在低葡萄糖时的脂肪酸(FA)刺激的胰岛素分泌(FASIS)同时存在。我们显示FAβ氧化产生超氧化物/H2O2,提供:i)线粒体到质膜的氧化还原信号,关闭KATP通道与升高的ATP协同作用(在葡萄糖刺激的胰岛素分泌时替代NADPH-氧化酶-4介导的H2O2信号传导);ii)氧化还原敏感性磷脂酶iPLA2γ/PNPLA8的激活,切割线粒体FAs,使代谢型GPR40受体增强胰岛素分泌(IS)。在空腹血糖,wt小鼠的棕榈酸刺激IS;棕榈酸,硬脂酸,月桂,油酸,亚油酸,和己酸也在融合胰岛(PI)中,在iPLA2γ/PNPLA8敲除小鼠/PIs中具有抑制的第一阶段。细胞外/胞质H2O2监测显示不依赖敲除的氧化还原信号,被线粒体抗氧化剂SkQ1,依托莫昔尔,CPT1消音,过氧化氢酶过表达,所有抑制FASIS,保持ATP敏感的K+通道开放,和胞质[Ca2+]振荡减少。小鼠中的FASIS是餐后延迟的生理事件。因此记录了FAβ氧化的氧化还原信号,到达质膜,本质上是共同刺激的。
    We asked whether acute redox signaling from mitochondria exists concomitantly to fatty acid- (FA-) stimulated insulin secretion (FASIS) at low glucose by pancreatic β-cells. We show that FA β-oxidation produces superoxide/H2O2, providing: i) mitochondria-to-plasma-membrane redox signaling, closing KATP-channels synergically with elevated ATP (substituting NADPH-oxidase-4-mediated H2O2-signaling upon glucose-stimulated insulin secretion); ii) activation of redox-sensitive phospholipase iPLA2γ/PNPLA8, cleaving mitochondrial FAs, enabling metabotropic GPR40 receptors to amplify insulin secretion (IS). At fasting glucose, palmitic acid stimulated IS in wt mice; palmitic, stearic, lauric, oleic, linoleic, and hexanoic acids also in perifused pancreatic islets (PIs), with suppressed 1st phases in iPLA2γ/PNPLA8-knockout mice/PIs. Extracellular/cytosolic H2O2-monitoring indicated knockout-independent redox signals, blocked by mitochondrial antioxidant SkQ1, etomoxir, CPT1 silencing, and catalase overexpression, all inhibiting FASIS, keeping ATP-sensitive K+-channels open, and diminishing cytosolic [Ca2+]-oscillations. FASIS in mice was a postprandially delayed physiological event. Redox signals of FA β-oxidation are thus documented, reaching the plasma membrane, essentially co-stimulating IS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    抗氧化剂在中和活性氧(ROS)中起关键作用,已知会引起氧化应激。在癌症发展的背景下,癌细胞通过称为“氧化还原重编程”的过程巧妙地维持ROS和抗氧化剂的升高水平。这种平衡优化了ROS的增殖影响,同时降低了ROS引起细胞损伤的可能性。在某些情况下,适应的抗氧化机制会阻碍肿瘤疾病的治疗效果,代表癌症治疗中观察到的耐药机制的一个重要方面。在这次审查中,我们概述了抗氧化系统对治疗抗性的贡献。我们详细介绍了这些系统的基本组成部分,涵盖涉及转录因子的中心调节机制(特别重要的是KEAP1/NRF2信号轴),抗氧化剂的分子效应,以及负责NADPH生成的辅助系统。此外,我们提出了基于靶向抗氧化系统治疗癌症的最新临床试验,评估这种策略在癌症治疗中的潜力和挑战。此外,我们总结了该领域的紧迫问题,目的是通过协调氧化还原信号传导来阐明新的抗癌治疗方法的出现。
    Antioxidants play a pivotal role in neutralizing reactive oxygen species (ROS), which are known to induce oxidative stress. In the context of cancer development, cancer cells adeptly maintain elevated levels of both ROS and antioxidants through a process termed \"redox reprogramming\". This balance optimizes the proliferative influence of ROS while simultaneously reducing the potential for ROS to cause damage to the cell. In some cases, the adapted antioxidant machinery can hamper the efficacy of treatments for neoplastic diseases, representing a significant facet of the resistance mechanisms observed in cancer therapy. In this review, we outline the contribution of antioxidant systems to therapeutic resistance. We detail the fundamental constituents of these systems, encompassing the central regulatory mechanisms involving transcription factors (of particular importance is the KEAP1/NRF2 signaling axis), the molecular effectors of antioxidants, and the auxiliary systems responsible for NADPH generation. Furthermore, we present recent clinical trials based on targeted antioxidant systems for the treatment of cancer, assessing the potential as well as challenges of this strategy in cancer therapy. Additionally, we summarize the pressing issues in the field, with the aim of illuminating a path toward the emergence of novel anticancer therapeutic approaches by orchestrating redox signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    一氧化氮(NO)在调节肾功能和血压方面的作用已得到广泛认可。然而,NO影响肾上皮细胞的确切机制仍未得到充分研究。我们先前的研究表明,肾小球足细胞中的NO信号传导可以由血管紧张素II(AngII)启动,而不是由ATP启动。这项研究旨在阐明肾素-血管紧张素系统(RAS)与足细胞中NO产生之间的关键相互作用。为了进行我们的研究,我们利用了培养的人足细胞和新鲜分离的大鼠肾小球。使用了多种RAS肽,与共聚焦显微镜一起,检测NO产生和NO/Ca2+串扰。足细胞细胞骨架的动态变化,由RAS-NO细胞内信号介导,使用F-肌动蛋白的荧光标记和扫描探针显微镜观察。实验表明,AngII和AngIII通过激活血管紧张素II2型受体(AT2R)产生了高水平的NO。我们没有在足细胞中检测到功能性MAS受体的存在,对Ang1-7的中度NO反应也通过AT2R介导。此外,NO的产生影响细胞内Ca2信号传导,并与足细胞体积和生长的增加相关。扫描探针实验表明,AT2R的激活和相应的NO的产生是足细胞层状足的突出原因。一起来看,我们的数据表明,AT2R激活可增强足细胞中NO的产生,并随后介导Ca2+信号和足细胞体积动力学的变化.这些机制可能在RAS和足细胞之间的生理和病理生理相互作用中起重要作用。
    Nitric oxide (NO) is widely recognized for its role in regulating renal function and blood pressure. However, the precise mechanisms by which NO affects renal epithelial cells remain understudied. Our previous research has shown that NO signaling in glomerular podocytes can be initiated by Angiotensin II (ANG II) but not by ATP. This study aims to elucidate the crucial interplay between the renin-angiotensin system (RAS) and NO production in podocytes. To conduct our research, we used cultured human podocytes and freshly isolated rat glomeruli. A variety of RAS peptides were used, alongside confocal microscopy, to detect NO production and NO/Ca2+ cross talk. Dynamic changes in the podocyte cytoskeleton, mediated by RAS-NO intracellular signaling, were observed using fluorescent labeling for F-actin and scanning probe microscopy. The experiments demonstrated that ANG II and ANG III generated high levels of NO by activating the angiotensin II type 2 receptor (AT2R). We did not detect functional MAS receptor presence in podocytes, and the moderate NO response to ANG 1-7 was also mediated through AT2R. Furthermore, NO production impacted intracellular Ca2+ signaling and correlated with an increase in podocyte volume and growth. Scanning probe experiments revealed that AT2R activation and the corresponding NO generation are responsible for the protrusion of podocyte lamellipodia. Taken together, our data indicate that AT2R activation enhances NO production in podocytes and subsequently mediates changes in Ca2+ signaling and podocyte volume dynamics. These mechanisms may play a significant role in both physiological and pathophysiological interactions between the RAS and podocytes.NEW & NOTEWORTHY The renin-angiotensin system plays a crucial role in the production of intracellular nitric oxide within podocytes. This mechanism operates through the activation of the angiotensin II type 2 receptor, leading to dynamic modifications in intracellular calcium levels and the actin filament network. This intricate process is vital for linking the activity of angiotensin receptors to podocyte function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氧分子接受来自线粒体呼吸链的电子,并负责好氧生物的能量产生。通过这些氧还原过程形成的活性氧与其他生物物质进行复杂的电子转移反应,这导致其生理功能的改变,并导致不同的生物学和病理生理后果(例如,氧化应激)。氧气只占生物体氧化还原反应的一小部分,特别是在有氧或低氧条件下,但不在无氧和低氧条件下。本文讨论了氧化还原生物学的全新概念,由氧化还原活性的超硫化物控制,即,硫连接的分子种类。这些物种大量存在于所有生物体中,但在氧化还原生物学和生命科学研究方面仍未被探索。事实上,越来越多的证据表明,超硫化物具有广泛的氧化还原化学性质,并且它们可以容易地电离或激进化以参与能量代谢,氧化还原信号,细胞和体内的氧化应激反应。因此,超硫化物活性的药物干预和药物调节已被证明有利于疾病发病机制的调节和疾病控制。
    Oxygen molecules accept electrons from the respiratory chain in the mitochondria and are responsible for energy production in aerobic organisms. The reactive oxygen species formed via these oxygen reduction processes undergo complicated electron transfer reactions with other biological substances, which leads to alterations in their physiological functions and cause diverse biological and pathophysiological consequences (e.g., oxidative stress). Oxygen accounts for only a small proportion of the redox reactions in organisms, especially under aerobic or hypoxic conditions but not under anaerobic and hypoxic conditions. This article discusses a completely new concept of redox biology, which is governed by redox-active supersulfides, i.e., sulfur-catenated molecular species. These species are present in abundance in all organisms but remain largely unexplored in terms of redox biology and life science research. In fact, accumulating evidence shows that supersulfides have extensive redox chemical properties and that they can be readily ionized or radicalized to participate in energy metabolism, redox signaling, and oxidative stress responses in cells and in vivo. Thus, pharmacological intervention and medicinal modulation of supersulfide activities have been shown to benefit the regulation of disease pathogenesis as well as disease control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号