RNA-Dependent RNA Polymerase

RNA 依赖性 RNA 聚合酶
  • 文章类型: Journal Article
    这里,我们从真菌米黑孢菌中鉴定了一种新型的有丝分裂病毒,被命名为“米黑孢菌三联病毒3”(NoMV3)。NoMV3基因组长度为2,492nt,G+C含量为33%,包含使用真菌线粒体遗传密码的单个大开放阅读框(ORF)。ORF编码775个氨基酸的RNA依赖性RNA聚合酶(RdRp),分子量为88.75kDa。BLASTp分析显示NoMV3的RdRp为68.6%,50.6%,分别与米黑孢菌丝裂病毒2型、黄体丝裂病毒6型和增殖镰刀菌丝裂病毒3型具有48.6%的序列同一性,属于有丝分裂病毒科内的Unuamitovirus属。基于氨基酸序列的系统发育分析支持将NoMV3分类为有丝分裂病毒科中Unuamitovirus属新物种的成员。
    Here, we characterized a novel mitovirus from the fungus Nigrospora oryzae, which was named \"Nigrospora oryzae mitovirus 3\" (NoMV3). The NoMV3 genome is 2,492 nt in length with a G + C content of 33%, containing a single large open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF encodes an RNA-dependent RNA polymerase (RdRp) of 775 amino acids with a molecular mass of 88.75 kDa. BLASTp analysis revealed that the RdRp of NoMV3 had 68.6%, 50.6%, and 48.6% sequence identity to those of Nigrospora oryzae mitovirus 2, Suillus luteus mitovirus 6, and Fusarium proliferatum mitovirus 3, respectively, which belong to the genus Unuamitovirus within the family Mitoviridae. Phylogenetic analysis based on amino acid sequences supported the classification of NoMV3 as a member of a new species in the genus Unuamitovirus within the family Mitoviridae.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自SARS-CoV-2出现以来,该病毒的RNA依赖性RNA聚合酶(RdRp)的所有亚基中的突变已被反复报道。尽管RdRp是抗病毒药物的主要靶标,探索这些突变的表型效应的实验研究是有限的。这项研究的重点是三个RdRp亚基nsp7,nsp8和nsp12中取代的表型效应,根据它们的发生率和潜在影响进行选择。我们使用纳米差示扫描荧光法和微尺度热电泳来检查这些突变对蛋白质稳定性和RdRp复合物组装的影响。我们观察到不同的影响;特别是,nsp8中的单个突变显着增加了其稳定性,如解链温度升高13°C所证明的那样,而nsp7和nsp8中的某些突变在RdRp复合物形成期间降低了它们对nsp12的结合亲和力。使用荧光酶测定法,我们评估了对RNA聚合酶活性的总体影响.我们发现大多数检测的突变改变了聚合酶的活性,通常作为对RdRp复合物的其他组分的稳定性或亲和力变化的直接结果。有趣的是,nsp8A21V和nsp12P323L突变的组合导致聚合酶活性增加50%.据我们所知,这是第一项生化研究,旨在证明在新兴的SARS-CoV-2亚变体中构成RdRp复合物的所有组分中氨基酸突变的影响.
    Since the emergence of SARS-CoV-2, mutations in all subunits of the RNA-dependent RNA polymerase (RdRp) of the virus have been repeatedly reported. Although RdRp represents a primary target for antiviral drugs, experimental studies exploring the phenotypic effect of these mutations have been limited. This study focuses on the phenotypic effects of substitutions in the three RdRp subunits: nsp7, nsp8, and nsp12, selected based on their occurrence rate and potential impact. We employed nano-differential scanning fluorimetry and microscale thermophoresis to examine the impact of these mutations on protein stability and RdRp complex assembly. We observed diverse impacts; notably, a single mutation in nsp8 significantly increased its stability as evidenced by a 13°C increase in melting temperature, whereas certain mutations in nsp7 and nsp8 reduced their binding affinity to nsp12 during RdRp complex formation. Using a fluorometric enzymatic assay, we assessed the overall effect on RNA polymerase activity. We found that most of the examined mutations altered the polymerase activity, often as a direct result of changes in stability or affinity to the other components of the RdRp complex. Intriguingly, a combination of nsp8 A21V and nsp12 P323L mutations resulted in a 50% increase in polymerase activity. To our knowledge, this is the first biochemical study to demonstrate the impact of amino acid mutations across all components constituting the RdRp complex in emerging SARS-CoV-2 subvariants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    禽流感病毒(AIV)是多种哺乳动物流感病毒的起源。已经广泛阐明了适应人类的AIV的遗传决定因素,然而,跨物种传播和AIV适应犬的分子机制仍然知之甚少。在这项研究中,使用从活禽市场分离的两种H3N2流感病毒(A/environment/广西/13431/2018,GX13431)和来自犬的拭子样本(A/犬/广东/0601/2019,GD0601)来调查可能的分子基础确定H3N2AIV适应犬。我们发现GD0601与其进化祖先H3N2AIVGX13431相比,在细胞中表现出更强的聚合酶活性和在小鼠中更高的致病性。核糖核蛋白(RNP)复合物的一系列重排表明,PB2亚基是赋予GD0601高聚合酶活性的关键因素,而GD0601的PB2亚基中I714S的取代减弱了哺乳动物的复制和致病性细胞和小鼠模型。机械上,在AIVGX13431中鉴定的PB2聚合酶亚基中I714S的反向突变降低了PB2蛋白的核导入效率,并干扰了影响病毒RNP复合物组装的PB2-PA/NP的相互作用.我们的研究揭示了PB2中核定位信号(NLS)区714位的氨基酸突变在克服H3N2犬流感病毒从家禽到哺乳动物的屏障中起着重要作用,并为进一步研究哺乳动物适应机制提供了线索。AIV。
    Avian influenza viruses (AIVs) are the origin of multiple mammal influenza viruses. The genetic determinants of AIVs adapted to humans have been widely elucidated, however, the molecular mechanism of cross-species transmission and adaptation of AIVs to canines are still poorly understood. In this study, two H3N2 influenza viruses isolated from a live poultry market (A/environment/Guangxi/13431/2018, GX13431) and a swab sample from a canine (A/canine/Guangdong/0601/2019, GD0601) were used to investigate the possible molecular basis that determined H3N2 AIV adapting to canine. We found that GD0601 exhibited more robust polymerase activity in cells and higher pathogenicity in mice compared with its evolution ancestor H3N2 AIV GX13431. A series of reassortments of the ribonucleoprotein (RNP) complex showed that the PB2 subunit was the crucial factor that conferred high polymerase activity of GD0601, and the substitution of I714S in the PB2 subunit of GD0601 attenuated the replication and pathogenicity in mammal cells and the mouse model. Mechanistically, the reverse mutation of I714S in the PB2 polymerase subunit which was identified in AIV GX13431 reduced the nuclear import efficiency of PB2 protein and interfered with the interactions of PB2-PA/NP that affected the assembly of the viral RNP complex. Our study reveals amino acid mutation at the position of 714 in the nuclear localization signal (NLS) area in PB2 plays an important role in overcoming the barrier from poultry to mammals of the H3N2 canine influenza virus and provides clues for further study of mammalian adaptation mechanism of AIVs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    苯并呋喃核心抑制剂HCV-796、BMS-929075、MK-8876、化合物2和化合物9B对NS5B聚合酶的各种基因型表现出良好的泛基因型活性。为了阐明它们的作用机制,使用多种分子模拟方法来研究这些抑制剂与GT1a结合的复杂系统,1b,2a,和2b个NS5B聚合酶。计算结果表明,这5种抑制剂不仅能与NS5B聚合酶的palmⅡ亚结构域中的残基相互作用,而且还具有棕榈I亚结构域或棕榈I/III重叠区域中的残基。有趣的是,在C5位置具有较长取代基的抑制剂(BMS-929075、MK-8876、化合物2和化合物9B)与GT1a和2b的NS5B聚合酶的结合与与GT1b和2a的NS5B聚合酶的结合相比表现出不同的结合模式。抑制剂C2位的对氟苯基与结合袋的残基之间的相互作用,以及C5位置的取代基与反向β倍的残基(残基441-456)之间的相互作用,在识别和诱导结合中起关键作用。相关研究可为进一步研究和开发新型抗HCV苯并呋喃核心泛基因型抑制剂提供有价值的信息。
    The benzofuran core inhibitors HCV-796, BMS-929075, MK-8876, compound 2, and compound 9B exhibit good pan-genotypic activity against various genotypes of NS5B polymerase. To elucidate their mechanism of action, multiple molecular simulation methods were used to investigate the complex systems of these inhibitors binding to GT1a, 1b, 2a, and 2b NS5B polymerases. The calculation results indicated that these five inhibitors can not only interact with the residues in the palm II subdomain of NS5B polymerase, but also with the residues in the palm I subdomain or the palm I/III overlap region. Interestingly, the binding of inhibitors with longer substituents at the C5 position (BMS-929075, MK-8876, compound 2, and compound 9B) to the GT1a and 2b NS5B polymerases exhibits different binding patterns compared to the binding to the GT1b and 2a NS5B polymerases. The interactions between the para-fluorophenyl groups at the C2 positions of the inhibitors and the residues at the binding pockets, together with the interactions between the substituents at the C5 positions and the residues at the reverse β-fold (residues 441-456), play a key role in recognition and the induction of the binding. The relevant studies could provide valuable information for further research and development of novel anti-HCV benzofuran core pan-genotypic inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项研究中,一种新型的有丝分裂病毒,暂时指定为“Alternariaalternatamitovirus2”(AaMV2),从真菌Alternariaalternataf.sp.中分离出来。引起苹果叶斑病的马里人。AaMV2的完整基因组长度为3,157个核苷酸,A+U含量为68.10%。基因组具有单个大的开放阅读框(ORF),编码分子质量为98.10kDa的RNA依赖性RNA聚合酶(RdRp)蛋白。BLAST分析显示,AaMV2与双翅目丝裂病毒6具有最高的序列同一性,在氨基酸和核苷酸水平上具有79.76%和82.86%的同一性,分别。系统发育分析表明,AaMV2是有丝分裂病毒科Duamitovirus属的新成员。这是对A.alternata中有丝分裂病毒的完整基因组序列分析的第一份报告。
    In this study, a novel mitovirus, tentatively designated as \"Alternaria alternata mitovirus 2\" (AaMV2), was isolated from the fungus Alternaria alternata f. sp. mali causing apple leaf blotch disease. The complete genome of AaMV2 is 3,157 nucleotides in length, with an A+U content of 68.10%. The genome has a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) protein with a molecular mass of 98.10 kDa. BLAST analysis revealed that AaMV2 has the highest sequence identity to Leptosphaeria biglobosa mitovirus 6, with 79.76% and 82.86% identity at the amino acid and nucleotide level, respectively. Phylogenetic analysis suggested that AaMV2 is a new member of the genus Duamitovirus within the family Mitoviridae. This is the first report of the complete genome sequence analysis of a mitovirus in A. alternata.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    病毒性疾病由于其快速传播和广泛影响而构成了严重的全球健康威胁。RNA依赖性RNA聚合酶(RdRp)参与合成,转录,以及病毒RNA在宿主中的复制。目前的研究调查了次级代谢物的抗病毒潜力,特别是那些来自细菌,真菌,和植物开发新药。使用结合分子对接和分子动力学(MD)模拟的虚拟筛选方法,我们旨在发现与五种不同逆转录病毒的RdRp具有强相互作用的化合物。根据每个病毒RdRp的对接得分,选择前五个化合物,绑定模式,分子相互作用,和药物相似特性。分子对接研究发现了几种具有抗RdRp抗病毒活性的代谢物。例如,细胞松弛素Z8对SARS-CoV-2的RdRp的对接得分最低,为-8.9(kcal/mol),对HIV-1的阿苏维酮D(-9.2kcal/mol),talaromyolideD(-9.9kcal/mol)丙型肝炎,针对埃博拉病毒和talaromyolideD的乙酰维酮D(-9.9kcal/mol)也保持了对登革病毒RdRp酶的最低对接评分-9.2kcal/mol。这些化合物显示出与批准靶向RdRp的标准药物(remdesivir-7.4kcal/mol)相当的显着抗病毒潜力,并且没有明显的毒性。分子动力学模拟证实,最佳选择的配体牢固地结合到它们各自的靶蛋白上,模拟时间为200ns。确定的先导化合物具有独特的药理学特征,使它们成为抗SARS-CoV-2抗病毒药物的潜在候选者。建议进一步的实验评估和调查以确定其功效和潜力。
    Viral diseases pose a serious global health threat due to their rapid transmission and widespread impact. The RNA-dependent RNA polymerase (RdRp) participates in the synthesis, transcription, and replication of viral RNA in host. The current study investigates the antiviral potential of secondary metabolites particularly those derived from bacteria, fungi, and plants to develop novel medicines. Using a virtual screening approach that combines molecular docking and molecular dynamics (MD) simulations, we aimed to discover compounds with strong interactions with RdRp of five different retroviruses. The top five compounds were selected for each viral RdRp based on their docking scores, binding patterns, molecular interactions, and drug-likeness properties. The molecular docking study uncovered several metabolites with antiviral activity against RdRp. For instance, cytochalasin Z8 had the lowest docking score of -8.9 (kcal/mol) against RdRp of SARS-CoV-2, aspulvinone D (-9.2 kcal/mol) against HIV-1, talaromyolide D (-9.9 kcal/mol) for hepatitis C, aspulvinone D (-9.9 kcal/mol) against Ebola and talaromyolide D also maintained the lowest docking score of -9.2 kcal/mol against RdRp enzyme of dengue virus. These compounds showed remarkable antiviral potential comparable to standard drug (remdesivir -7.4 kcal/mol) approved to target RdRp and possess no significant toxicity. The molecular dynamics simulation confirmed that the best selected ligands were firmly bound to their respective target proteins for a simulation time of 200 ns. The identified lead compounds possess distinctive pharmacological characteristics, making them potential candidates for repurposing as antiviral drugs against SARS-CoV-2. Further experimental evaluation and investigation are recommended to ascertain their efficacy and potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    牛病毒性腹泻病毒(BVDV)是牛和其他哺乳动物的广泛病原体,在畜牧业中造成重大经济损失。N4-TSC和6NO2-TSC是两种衍生自1-茚满酮的缩氨基硫酮,其在体外表现出抗BVDV活性。这些化合物选择性抑制BVDV,并且对细胞病变和非细胞病变BVDV-1和BVDV-2菌株都有效。我们证实N4-TSC在病毒RNA合成的开始起作用,如先前报道的6NO2-TSC。此外,抗性选择和表征表明,N4-TSCR突变体对N4-TSC具有高度抗性,但对6NO2-TSC仍然敏感。相比之下,6NO2-TSCR突变体对两种化合物均具有抗性。此外,在N4-TSCR突变体的病毒RNA依赖性RNA聚合酶(RdRp)中发现了N264D和A392E突变,而在6NO2-TSCR突变体中发现了I261M。这些突变位于BVDVRdRp指尖区域内的疏水口袋中,该区域已被描述为BVDV非核苷抑制剂的“热点”。
    Bovine viral diarrhea virus (BVDV) is a widespread pathogen of cattle and other mammals that causes major economic losses in the livestock industry. N4-TSC and 6NO2-TSC are two thiosemicarbazones derived from 1-indanone that exhibit anti-BVDV activity in vitro. These compounds selectively inhibit BVDV and are effective against both cytopathic and non-cytopathic BVDV-1 and BVDV-2 strains. We confirmed that N4-TSC acts at the onset of viral RNA synthesis, as previously reported for 6NO2-TSC. Moreover, resistance selection and characterization showed that N4-TSCR mutants were highly resistant to N4-TSC but remained susceptible to 6NO2-TSC. In contrast, 6NO2-TSCR mutants were resistant to both compounds. Additionally, mutations N264D and A392E were found in the viral RNA-dependent RNA polymerase (RdRp) of N4-TSCR mutants, whereas I261 M was found in 6NO2-TSCR mutants. These mutations lay in a hydrophobic pocket within the fingertips region of BVDV RdRp that has been described as a \"hot spot\" for BVDV non-nucleoside inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自扩增RNA(saRNA)是多功能疫苗平台,其利用病毒RNA依赖性RNA聚合酶(RdRp)来扩增一旦在靶细胞内在病毒基因组的骨架内编码的目标抗原的信使RNA(mRNA)。近年来,更多的saRNA疫苗已经进行了临床试验,希望与常规mRNA方法相比减少疫苗接种剂量.使用N1-甲基-假尿苷(1mp),增强RNA稳定性并减少由RNA引发的先天免疫反应,是当前mRNA疫苗中包括的改进之一。在本研究中,我们评估了这种修饰的核苷在基于不同病毒的各种saRNA平台上的作用。结果表明,复制过程的不同阶段受到骨架病毒的影响。对于TNCL,一种Alphanodavirus属的昆虫病毒,复制因RdRp对病毒RNA的识别力差而受损。相比之下,翻译步骤在柯萨奇病毒B3(CVB3)中被严重废除,Picornaviridae家族的成员。最后,1熔点对Semliki森林病毒(SFV)的影响,在体外研究中没有损害,但是在体内测试免疫原性时没有观察到优势。
    Self-amplifying RNAs (saRNAs) are versatile vaccine platforms that take advantage of a viral RNA-dependent RNA polymerase (RdRp) to amplify the messenger RNA (mRNA) of an antigen of interest encoded within the backbone of the viral genome once inside the target cell. In recent years, more saRNA vaccines have been clinically tested with the hope of reducing the vaccination dose compared to the conventional mRNA approach. The use of N1-methyl-pseudouridine (1mΨ), which enhances RNA stability and reduces the innate immune response triggered by RNAs, is among the improvements included in the current mRNA vaccines. In the present study, we evaluated the effects of this modified nucleoside on various saRNA platforms based on different viruses. The results showed that different stages of the replication process were affected depending on the backbone virus. For TNCL, an insect virus of the Alphanodavirus genus, replication was impaired by poor recognition of viral RNA by RdRp. In contrast, the translation step was severely abrogated in coxsackievirus B3 (CVB3), a member of the Picornaviridae family. Finally, the effects of 1mΨ on Semliki forest virus (SFV), were not detrimental in in vitro studies, but no advantages were observed when immunogenicity was tested in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    日本脑炎病毒(JEV)是节肢动物传播的,正链黄病毒引起人类病毒性脑炎,病死率高。具有RNA依赖性RNA聚合酶活性的JEV非结构蛋白5(NS5)与病毒和宿主蛋白相互作用以构成复制复合物。我们已经将多功能蛋白Nucleolin(NCL)鉴定为几种与NS5相互作用的宿主蛋白之一。我们证明了JEVNS5与NCL在病毒感染的HeLa细胞中的相互作用和共定位。siRNA介导的NCL敲低表明它是有效病毒复制所必需的。重要的是,JEV在过表达外源NCL的细胞中生长到更高滴度,证明了它的病毒作用。我们证明了NS5与NCL的RRM和GAR域相互作用。我们表明,含有G-四链体(GQ)结构和GQ配体BRACO-19的NCL结合适体AS1411引起了对JEV复制的显着抑制。AS1411和BRACO-19在HeLa细胞中的抗病毒作用可以通过外源NCL的过表达来克服。我们证明了来自含有GQ序列的JEV基因组RNA的3'-NCR的合成RNA可以在体外结合NCL。病毒RNA合成需要与3'-NCR结合的复制复合物。复制复合物中存在的NCL可能会使基因组RNA中的GQ结构不稳定,从而促进复制复合体的移动,导致有效的病毒复制。重要日本脑炎病毒(JEV)在东南亚大部分地区和西太平洋地区流行,导致脑炎流行,病死率高。虽然组织培养来源的JEV疫苗是可用的,不存在抗病毒治疗。JEVNS5蛋白具有RNA依赖性RNA聚合酶活性。连同几种宿主和病毒蛋白,它构成了病毒复制所必需的复制复合体。了解NS5与宿主蛋白的相互作用可以帮助设计新的抗病毒药物。我们确定Nucleolin(NCL)是JEVNS5的关键宿主蛋白相互作用因子,在病毒复制中具有促病毒作用。NS5相互作用的NCL与JEVRNA的3'-NCR中的G-四链体(GQ)结构序列结合。这可以使复制复合物沿着基因组RNA的运动变得平滑,从而促进病毒复制。这项研究是关于NCL,宿主蛋白,通过GQ绑定帮助JEV复制。
    Japanese encephalitis virus (JEV) is an arthropod-borne, plus-strand flavivirus causing viral encephalitis in humans with a high case fatality rate. The JEV non-structural protein 5 (NS5) with the RNA-dependent RNA polymerase activity interacts with the viral and host proteins to constitute the replication complex. We have identified the multifunctional protein Nucleolin (NCL) as one of the several NS5-interacting host proteins. We demonstrate the interaction and colocalization of JEV NS5 with NCL in the virus-infected HeLa cells. The siRNA-mediated knockdown of NCL indicated that it was required for efficient viral replication. Importantly, JEV grew to higher titers in cells over-expressing exogenous NCL, demonstrating its pro-viral role. We demonstrated that NS5 interacted with the RRM and GAR domains of NCL. We show that the NCL-binding aptamer AS1411 containing the G-quadruplex (GQ) structure and the GQ ligand BRACO-19 caused significant inhibition of JEV replication. The antiviral effect of AS1411 and BRACO-19 could be overcome in HeLa cells by the overexpression of exogenous NCL. We demonstrated that the synthetic RNAs derived from the 3\'-NCR of JEV genomic RNA containing the GQ sequence could bind NCL in vitro. The replication complex binding to the 3\'-NCR is required for the viral RNA synthesis. It is likely that NCL present in the replication complex destabilizes the GQ structures in the genomic RNA, thus facilitating the movement of the replication complex resulting in efficient virus replication.IMPORTANCEJapanese encephalitis virus (JEV) is endemic in most parts of South-East Asia and the Western Pacific region, causing epidemics of encephalitis with a high case fatality rate. While a tissue culture-derived JEV vaccine is available, no antiviral therapy exists. The JEV NS5 protein has RNA-dependent RNA polymerase activity. Together with several host and viral proteins, it constitutes the replication complex necessary for virus replication. Understanding the interaction of NS5 with the host proteins could help design novel antivirals. We identified Nucleolin (NCL) as a crucial host protein interactor of JEV NS5 having a pro-viral role in virus replication. The NS5-interacting NCL binds to the G-quadruplex (GQ) structure sequence in the 3\'-NCR of JEV RNA. This may smoothen the movement of the replication complex along the genomic RNA, thereby facilitating the virus replication. This study is the first report on how NCL, a host protein, helps in JEV replication through GQ-binding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Mononegavirales,或非分段负义RNA病毒(nsNSVs),包括重要的人类病原体,如呼吸道合胞病毒,副流感病毒,麻疹病毒,埃博拉病毒,狂犬病病毒。尽管这些病毒的致病特性差异很大,它们通过各自具有由单链负义RNA组成的基因组而联合。与它们共享的基因组结构一致,nsNSV已经进化出类似的方法将它们的基因组转录成mRNAs并复制它以产生新的基因组.重要的是,mRNA转录和基因组复制均由单一病毒编码的聚合酶完成.一个基本且有趣的问题是:nsNSV聚合酶如何成为mRNA转录酶或复制酶?聚合酶必须在与基因组模板相互作用之前或在与基因组RNA3'末端的启动子序列的初始相互作用中致力于一个过程或另一个过程。这篇综述探讨了生物化学,分子生物学,以及关于转录和RNA复制的第一步的结构生物学数据,这些数据已经为不同的nsNSV家族收集了几十年。讨论了这些发现与可能的模型有关,这些模型可以解释nsNSV聚合酶如何启动并致力于转录或基因组复制。
    The Mononegavirales, or non-segmented negative-sense RNA viruses (nsNSVs), includes significant human pathogens, such as respiratory syncytial virus, parainfluenza virus, measles virus, Ebola virus, and rabies virus. Although these viruses differ widely in their pathogenic properties, they are united by each having a genome consisting of a single strand of negative-sense RNA. Consistent with their shared genome structure, the nsNSVs have evolved similar ways to transcribe their genome into mRNAs and replicate it to produce new genomes. Importantly, both mRNA transcription and genome replication are performed by a single virus-encoded polymerase. A fundamental and intriguing question is: how does the nsNSV polymerase commit to being either an mRNA transcriptase or a replicase? The polymerase must become committed to one process or the other either before it interacts with the genome template or in its initial interactions with the promoter sequence at the 3´ end of the genomic RNA. This review examines the biochemical, molecular biology, and structural biology data regarding the first steps of transcription and RNA replication that have been gathered over several decades for different families of nsNSVs. These findings are discussed in relation to possible models that could explain how an nsNSV polymerase initiates and commits to either transcription or genome replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号